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Chapter #2 Problems 
1. A fluid has the following velocity profile in three dimensions: 
 
 

  
vr = vo r 2θ +θ 2z − r 2z( )   

  
vθ = vo θ 2z −θ 2r +θ 3( )  

 
  
vz = vo zr 2 − z2θ( )  

 
 a) What are the 9 stresses for this fluid? 
 b) Is the fluid incompressible? 
 
                                        
 
 
 It is easiest to answer part (b) first.  We need to calculate the divergence of v,  
 

  
   
∇• v( ) = 1

r
∂
∂r

rvr( ) + 1
r
∂vθ
∂θ

+
∂vz

∂z
. 

 

  
  

1
r
∂
∂r

rvr( ) = vo 3rθ + θ 2z
r

− 3rz
⎛
⎝⎜

⎞
⎠⎟

 

  
  
1
r
∂vθ
∂θ

=
vo

r
2θ z − 2θr + 3θ 2( )  

  
  

∂vz

∂z
= vo r 2 − 2θz( )  

 

  
   
∇• v( ) = vo

r
3r 2 θ − z( ) +θ 2 z + 3( )− 2rθ + r3 + 2θz − 2rθz( )  

 
 Since (∇•v) ≠  0  the fluid is compressible.  This is so even though there may be some 

values of r, θ , z for which ∇•v = 0.  To be incompressible, the divergence must be zero 
everywhere. 

 
 The 9 stresses can be calculated by referring to Table 2.4. Dealing with the shear 

stresses first: 
 

  

  

τ rθ = τθr = −µ r
∂
∂θ

vθ
r

⎛

⎝⎜
⎞

⎠⎟
+ 1

r
∂vr

∂θ
⎛

⎝
⎜

⎞

⎠
⎟

−µvo 2θz − 2rθ + 3θ 2 + r + 2θz
r

⎛
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⎞
⎠⎟

 

 

  
  
τ zθ = τθ z = −µ

∂vθ
∂z

+ 1
r
∂vz

∂θ
⎛

⎝⎜
⎞

⎠⎟
= −µvo θ 2 + z2

r
⎛
⎝⎜

⎞
⎠⎟
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τ rz = τ zr = −µ

∂vr

∂z
+
∂vz

∂r
⎛

⎝⎜
⎞

⎠⎟
= −µvo θ 2 − r 2 + 2zr( )  

 
 The normal stresses are: 
 

  

   

τ rr = − 2µ
∂vr

∂r
− 2

3
µ −κ
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⎞
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⎞
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3
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⎛
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⎞
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⎞
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τθθ = − 2µ 1
r
∂vθ
∂θ

+
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r
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⎞
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⎞
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τ zz = − 2µ
∂vz

∂z
− 2

3
µ −κ

⎛
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⎞
⎠⎟
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2. In 1856 H. Darcy published a paper where he described experiments showing that the flow of 
fluid through a porous medium was linearly related to the pressure drop across the medium. 

 

  
   


v = − k

µ


∇P     Darcy's Law 

 
 where k is the permeability of the porous medium. In three dimensions Darcy's Law can be 

written as: 
 

  
 
vx = − k

µ
∂P
∂x

⎛
⎝⎜

⎞
⎠⎟

vy = − k
µ

∂P
∂y

⎛
⎝⎜

⎞
⎠⎟

vz = − k
µ

∂P
∂z

⎛
⎝⎜

⎞
⎠⎟

 

 
 Show, that if the fluid is incompressible, the pressure must obey Laplace's Equation 

( ∇
2P = 0 ). 

 
                                        
 
 
 If the fluid is incompressible then ∇  • v = 0.  If we plug in for v using Darcy’s Law we 

have: 
 

  
   
− k
µ


∇ •

∇P = 0 = − k

µ
∇2 P  

 
 and Laplace’s equation is satisfied.  Of course you can do it brute force by expanding 

the gradient operator, taking the dot product with the velocity, and then plugging in for 
the pressure components but that is a lot of work.  It is easier to just look up the vector 
identity. 
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3. Many fluids are non-Newtonian.  A classic non-Newtonian material is low-fat Mayonnaise.  The reason 
behind this is the modified starches and xanthan gum used to stabilize the water and oil emulsion.  The 
following data set is representative of one brand of mayonnaise. 

a) Plot the data and discuss whether mayonnaise is a shear-thinning or shear-thickening fluid? 
b) If you fit the data to a power law expression, what is the exponent you determine? 
 

Apparent 
Viscosity 

(Pa•s) 

Shear Rate 
(1/s) 

Apparent 
Viscosity 

(Pa•s) 

Shear Rate 
(1/s) 

0.396 249.096 2.207 51.413 
0.598 167.090 2.413 47.971 
0.790 133.307 2.580 44.767 
0.988 108.264 2.790 41.064 
1.194 91.034 3.017 38.983 
1.412 77.892 3.227 37.010 
1.596 67.828 3.450 35.138 
1.805 61.132 3.649 33.363 
1.996 55.107 3.859 31.678 
2.207 51.413 4.080 30.078 

 Data:  Donatella Peressini, Alessandro Sensidoni, Bruno de Cindio, Journal of Food Engineering 
35, 409–417, (1998). 
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4. The Carreau-Yasuda model is a popular formulation for representing non-Newtonian fluid behavior.  The 
model is: 

 

 

   

µ = µ∞ + µ0 − µ∞( ) 1+ K γ( )a( )
n−1
a

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  

 
 where  γ  is the shear rate, µ0 is the viscosity at zero shear rate and µ∞ is the viscosity at infinite shear rate.  

One of the composite materials that the Carreau-Yasuda model has been used for is to determine the 
rheology of blood.  Given the data below, fit the Carreau-Yasuda model and determine the values of the 
parameters. 

 
Viscosity 
(Ns/m2) 

Shear Rate 
(1/s) 

Viscosity 
(Ns/m2) 

Shear Rate 
(1/s) 

0.2 0 0.0254 50 
0.048 3.33333 0.0244 60 
0.04 6.66667 0.0236 70 

0.037 10 0.0229 80 
0.034 13.3333 0.0223 90 
0.033 16.6667 0.0218 100 
0.031 20 0.0208 120 
0.030 23.3333 0.0202 140 
0.029 26.6667 0.0196 160 
0.028 30 0.0190 180 
0.028 33.3333 0.0186 200 
0.027 36.6667 0.0181 230 

0.0268 40 0.0176 260 
0.0263 43.3333 0.0172 290 
0.0259 46.6667 0.0167 320 
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5. Prove that all forms of Fick's Law agree with thermodynamics; that is 'At equilibrium, the 

concentration of all species throughout the system should be uniform. 
 
                                        
 
 
 Lets look at Fick's Law written in terms of the molar flux relative to stationary 

coordinates and Fick's Law written in terms of the molar flux relative to a molar 
average velocity. 

 

  

 

Ja = −Dab

dca

dy

Na = −Dab

dca

dy
+ xa Na + Nb( )

 

 
 At equilibrium, the flux must be zero.  We cannot see any macroscopic change.  Thus 

Ja,  Na, and Nb are all zero.  Fick's Laws reduce to: 
 

  
  
Dab

dca

dy
= 0  

 
 for both cases.  The only way the derivative of concentration can be zero is if it is equal 

to a constant.  We can extend this in three directions quite easily.  In that case we end 
up with 

 
  .   Dab


∇ • ca = 0 . 

 
 which just means that the concentration must be uniform in all directions. 
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6. Prove that in a binary mixture whose total concentration of species, ct, remains constant, 
there is only one diffusion coefficient; Dab = Dba. 

 
                                        
 
 
 In a binary mixture we have 
 

  

   


Na = −Dab


∇ca + xa


Na +


Nb( )


Nb = −Dba


∇cb + xb


Na +


Nb( )

 

 
 Adding the two equations we have: 
 
     −Dab


∇ca − Dba


∇cb = 0  

 
 since xa + xb = 1.  Now if we have no chemical reaction and no great change in volume, 

i.e. no partial molar volume effects, ca + cb = ct.  We can substitute for ca or cb and 
obtain an equation of the form: 

 
     Dab


∇cb − Dba


∇cb = 0  

 
 which shows that Dab = Dba. Notice that if we have a chemical reaction or we have large 

volume changes on mixing, then we have additional effects (i.e. additional components 
to the flux) we must account for.  This gives rise to a change in the diffusion coefficients 
for the individual species. 
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7. A solid containing species "a" has been analyzed and the mole fraction profile has been 
found to obey the following function of y alone: 

 
    xa =ao y − Kyo

3     ao, yo, K - constants. 
 
 a) Assuming a constant value for the diffusivity, Dab = Dabo, and a dilute solution of "a" in 

"b", has the system reached a steady state, i.e. does it obey the continuity equation in one 
dimension? 

 b) Assuming "a" diffused through stagnant "b" (Nb ≈ 0) and has reached  
 steady-state, what can you say about how the diffusivity varies as a function of composition? 
 
                                        
 
 

 At steady state and dilute solutions, 
  
Na = constant = −ct Dab

dxa

dy
. 

 Taking the derivative of the mole fraction profile, we see that 
 

  

  

Na = −ct Dab

1
3

ao

1
y − Kyo

⎛

⎝⎜
⎞

⎠⎟

2/3⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 
 and so the system is not at steady state. 
 
  At steady state and Nb = 0, we have for Fick's Law: 
 

  
  
Na = −

ct Dab

1− xa

dxa

dy
 

 
 Since Na is a constant, we can plug in for xa and its dervative to obtain an expression for 

how the diffusivity varies with mole fraction. 
 

  

  

Dab = −
1− xa

ct

dxa

dy

=
1− xa

ctao
3

3xa
2
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8. A new lithium sulfate (Li2SO4) electrolyte has been developed for battery applications. 
Assuming ideal solutions and a stationary coordinate system, what does Fick's Law for the 
flux (NLi, NSO4) for both lithium and sulfate species look like? 

 
                                        
 
 
 The fluxes for the ions must obey two masters, Fick's law and local electroneutrality.  

Thus for every sulfate ion that moves, two lithium ions must also move in the opposite 
direction.  Thus we have: 

 

  

    


NLi = −ct DLi


∇xLi + xLi


NLi +


NSO4

( )

NSO4

= −ct DSO4


∇xSO4

+ xSO4


NLi +


NSO4

( )
 

 
 Since NLi = −2NSO4 : 
 

  

    


NLi = −

ct DLi


∇xLi

1− 1
2

xLi


NSO4

= −
ct DSO4


∇xSO4

1+ xSO4
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9. We defined a molar flux relative to the molar average velocity as: 
 
  

   


Ji = −ctDij


∇xi  

 
 We could just as easily have defined the flux relative to the volume average velocity, vv. 
 
  

   


Ji

v = ci vi − vv( ) = −Dij
v

∇ci  

 
 Show that the two diffusivities are equal even if the molar concentration, ct, is not constant. 
 
                                        
 
 
 The easiest way to show this is to operate on the definitions of average velocity. 
 

  

   


Ji

v = ci


vi + ci


viVi +


vjVj

Vi +Vj

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥


Ji = ci


vi + ci


vici +


vjcj

ci + cj

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 
 Operating on Ji, we divide the term in brackets by ct both in the numerator and 

denominator. 
 

  

    


Ji = ci


vi + ci


vici

ct

+

vjcj

ct

ci + cj

ct

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= ci


vi + ci


vixi +


vjx j

1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 
 Now multiplying by Vt in the same way we have: 
 

  
   


Ji = ci


vi + ci


vixiVt +


vjx jVt

Vt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= ci


vi + ci


viVi +


vjVj

Vt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

Ji

v  

 
 and have proved the premise where Vi + Vj =Vt. 
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10. The mass flux of a species can be written using the chemical potential as a driving force.  
Consider the case of simple binary diffusion in an ideal mixture of liquids.  If the chemical 
potential is given by: 

 
   µi

c = µio
c + RT ln xi  

 
 prove the total flux ja + jb = 0.  What must hold true if the chemical potentials are given by 

the equation below and the sum of the fluxes is to be zero? 
 
 

  
µi

c = µio
c + RT ln γ ixi( )  

 
                         
 
 We’ll handle the first part, first.  We can write the fluxes as: 
 
    

ja = Dabxa


∇µa

c

jb = Dbaxb


∇µb

c  
 
 Since Dab = Dba we can substitute in for the chemical potentials to give: 
 

 

    


ja = Dabxa


∇ µao

c + RT ln xa
⎡⎣ ⎤⎦


jb = Dabxb


∇ µbo

c + RT ln xb
⎡⎣ ⎤⎦


ja = Dabxa

RT
xa


∇xa = DabRT


∇xa


jb = Dabxb

RT
xb


∇xb = DabRT


∇xb

 

 
 Since xa + xb = 1 
 
 

    


ja +

jb = DabRT


∇xa +


∇xb( ) = DabRT


∇xa +


∇ 1− xa( )( ) = 0  

 
 If we repeat the process with the activity coefficients, we have: 
 

    


ja = Dabxa


∇ µao

c + RT ln γ axa( )⎡⎣ ⎤⎦

jb = Dabxb


∇ µbo

c + RT ln γ bxb( )⎡⎣ ⎤⎦


ja = Dabxa

RT
γ axa


∇ γ axa( ) = Dab

RT
γ a


∇ γ axa( )


jb = Dabxb

RT
γ bxb


∇ γ bxb( ) = Dab

RT
γ b


∇ γ bxb( )


ja +

jb = DabRT


∇ γ axa( )

γ a

+


∇ γ bxb( )

γ b

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= DabRT


∇ γ axa( )

γ a

+


∇ γ b 1− xa( )⎡⎣ ⎤⎦

γ b

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

 
 Combining all the terms we find: 
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
ja +

jb = DabRT

xaγ b


∇γ a + γ a


∇γ b − xaγ a


∇γ b

γ aγ b

⎛

⎝
⎜

⎞

⎠
⎟


ja +

jb = 0 → xaγ b


∇γ a + γ a


∇γ b − xaγ a


∇γ b = 0

 

 
 If the activity coefficients are constant the equation is automatically satisfied.  If they 

are a function of xa, then we must satisfy the relationship above. 
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11. Thermocouples attached to a truncated, conical roller bearing show that the temperature 
profile and heat flow rate are: 

 
 

  
T x( ) = 450 2 − 3x + x2 − x3( ) q = 7500 W  

 
 If the cross sectional area of the bearing is:

  
A x( ) = 0.04π 1− x( ) m2  

 
 a) What is the thermal conductivity as a function of x? 
 b) What is the heat flux at x = 0? x = 0.2? 
 c) Where is the heat flux, highest (0 < x < 0.2)? 
 

 
 
                                        
 

 
 The thermal conductivity is found using Fourier's Law. 
 

  

q = −kA dT
dx

k = − q

A dT
dx

= − 7500
0.04π 1− x( )2 450 −3+ 2x − 3x2( )

k = 132.63
1− x( )2 3− 2x + 3x2( )

 

 
 The heat flux is also obtained from Fourier's law. 
 
 

q"= −k dT
dx

= − 132.63
1− x( )2 3− 2x + 3x2( ) 450 −3+ 2x − 3x2( ){ } = 59683.51− x( )2

q" 0( ) = 59683.5 q" 0.2( ) = 93255.5
 

 
The highest heat flux is at x = 0.2 where the area is the smallest. 

  

q"= −k dT
dx

= − 132.63
1− x( )2 3− 2x + 3x2( ) 450 −3+ 2x − 3x2( ){ }

q"(0) = −59,683.5 W
m2 q"(0.2) = −93.255.5 W

m2
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 The heat flux is highest at the point where the area is smallest, i.e. at 0.2. 
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12. The two-dimensional object shown in the figure below is insulated with the exception of two 
flat portions that are exposed to two different temperatures. The temperature gradient at 
surface 1 is measured and found to be ∂T/∂x = 45 K/m. What are ∂T/∂x and ∂T/∂y at surface 
2? 

 

 
 
                                        
 
 
 At surface II, since the surface is a plate at a constant temperature, ∂T/∂x = 0 there.  

∂T/∂y is found using an energy balance that states whatever heat flows into surface I 
must flow out of surface II.  Using Fourier's law at both surfaces gives: 

 

  

  

−kA1

∂T
∂x 1

= −kA2

∂T
∂y 2

∂T
∂y 2

=
A1

A2

∂T
∂x 1

= 22.5 K / m
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13. A spherical shell of inner radius ri, outer radius, ro, and thermal conductivity, k, is being used 
to dissipate heat. At a particular time, the temperature profile within the shell is measured 
and found to be: 

 

  
  
T(r)=

C1

r
+ C2  

 
 a) Is the heat transfer at steady-state, i.e. is the rate constant? 
 b) How does the heat flux vary with position? 
 
                                        
 
 
 The heat transfer is at steady-state if the heat flow rate is a constant throughout the 

device.  We can determine this using Fourier's law. 
 

  
  
q = −kA dT

dr
= −k 4πr 2( ) d

dr
C1

r
+ C2

⎛
⎝⎜

⎞
⎠⎟
= 4πkC1  

 
 Since the heat flow rate is constant, the system is at steady-state. 
 
 The heat flux is again given by Fourier's law. 
 

  
  
q" = −k dT

dr
= −k d

dr
C1

r
+ C2

⎛
⎝⎜

⎞
⎠⎟
=

kC1

r 2  
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14. The heat flux,   


q" , due to a volume source distribution (expressed in spherical coordinates) is 

given by: 
 
    De = C  r2 sin(α r)er    0 < r < ro 

 
 a) What is the temperature gradient for this system? 
 b) If the temperature at r = 0 is T = To, what is the temperature profile? 
 c) At what value of r does the solution become aphysical? 
 
                                        
 
 
 Here, we need to apply the definition for the flux using Fourier's law. 
 

  

  

q" = −k dT
dr

= Cr 2 sin αr( )

dT
dr

= −
Cr 2 sin αr( )

k

 

 
 We integrate to get the temperature profile. 
 

 

  

T = − C
α 3k

2cos αr( ) + 2αr sin αr( ) −α 2r 2 cos αr( )⎡⎣ ⎤⎦ + K

K = To +
2C
α 3k

T − To =
C
α 3k

2 − 2cos αr( ) − 2αr sin αr( ) +α 2r 2 cos αr( )⎡⎣ ⎤⎦

 

 
 The solution becomes aphysical when T – To < 0.  If we assume α  = 1 for example, we 

can plot the quantity in brackets as a function of r to get the zeros.  The graph is shown 
below. 
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15. The voltage(V) – current(I) behavior for a new material was measured and found to be: 
 

I 
(amps) 

V 
(volts) 

0 0 
0.001 2 
0.003 5 
0.005 10 
0.012 20 
0.050 50 
0.200 100 

 
 The material was fashioned into a wire, 1 mm in diameter and 1 m long. 
 
 a) What is the conductivity of the material? 
 b) What is the conductivity of the material at V = 10 volts? 
 c) What is the diffusivity of the charge carriers at V = 10 volts and  
  T = 298K? 
 d) If the valence of the charge carriers is 1, what is their mobility? 
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Cubic Fit

 
 
The resistance of a material is related to its resistivity and conductivity by: 
 

 
Re = ρr

L
Ac

= 1
σ

L
Ac

 

 
The conductivity of the material can be determined by: 
 

   
σ = L

Re Ac

= L
Ac

I
V

= 1.27 ×106 I
V

⎛
⎝⎜

⎞
⎠⎟
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where we have used  Ohm’s Law to relate the resistance to the voltage and current 
assuming that it would be valid at every point.  The resistance then changes as a function of 
voltage. 
 

At 10 volts, we find: 
 

  
 
σ = 1.27 ×106 0.005

10
= 635   Siemens/m 

 
 The diffusivity of the charge carriers is: 
 

  

   

D± =
RT

Faze( )2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
σ = 8.314(298)

96500( )2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

636 = 0.169×10−3   m2/s 

 
 The mobility of the charge carriers is determined using the Einstein relation: 
 

  µe =
D±eze
kbT

= 6.58 ×10−3  m2/sV 
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16. We showed that one of the most often used form of Fick's Law for multi-component systems 
could be written as: 

 

  

    


J i = −Dijo 1+

∂ lnγ i

∂ ln xi

⎛

⎝⎜
⎞

⎠⎟

Dij

  


∇ci = ci


v i −

vc( )  

 
 Kinetic theory derivations of the flux equation lead to an expression for the gradient in 

chemical potential,   

∇µi , of the form: 

 

  
   


∇µi =

RTx j

Dijo


v j −

v i( )  

 
 Show that these two forms are equivalent representations for the binary case with species "i" 

and "j". Remember that the chemical potential for species, "i", is given by: 
 
  

  
µi = µi

o + RT ln γ ixi( )  Hint: Use expressions for Ji to solve for vi and vj. 
 
                                        
 
 
 First we divide Fick’s laws through by the concentrations 
 

  

    


J1

c1

= −
D12

c1


∇c1 = −

D12

x1


∇x1 = −D12


∇ ln x1 =


v1 −

vM


J2

c2

= −
D12

c2


∇c2 = −

D12

x2


∇x2 = −D12


∇ ln x2 =


v2 −

vM

 

 
 Subtract J2 from J1: 
 

  
    


J1

c1

−


J2

c2

= −D12


∇ ln x1 + D12


∇ ln x2 = D12


∇ ln

x2

x1

=

v1 −

v2  

 
 Use definition of chemical potential to get the gradient. 
 

  
    


∇µ1 = RT


∇ ln x1 + RT


∇ lnγ 1 =

RTx2

D12o


v2 −

v1( )  

 
 We plug in for v2 – v1 from above and use the fact that x1 + x2 = 1 to show that: 
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
∇µ1 = −

RTx2

D12o

D12


∇ ln

x2

x1

= −RTx2 1+
∂ lnγ 1

∂ ln x1

⎛

⎝⎜
⎞

⎠⎟
x1

x2


∇

x2

x1

⎛

⎝⎜
⎞

⎠⎟

= RT 1+
∂ lnγ 1

∂ ln x1

⎛

⎝⎜
⎞

⎠⎟

∇ ln x1
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17. Activities in solution can often be correlated by the Margules equations. 
 
  

  
lnγ 1 = x2

2 A12 + 2 A21 − A12( )x1
⎡⎣ ⎤⎦ lnγ 2 = x1

2 A21 + 2 A12 − A21( )x2
⎡⎣ ⎤⎦  

 
 For 2,4-dimethylpentane (1) and benzene (2), the coefficients A12 and A21 are 1.96 and 1.48 

respectively. Using the relations developed from problem 2.11, plot how Dij will depend 
upon composition for this binary system. 

 
                                        
 
 
 For the binary system, D12 = D21 so we only need consider one of the terms.  Thus: 
 

  
  
D12 = D12o 1+

∂ lnγ 1

∂ ln x1

⎛

⎝⎜
⎞

⎠⎟
 

 
 Now: 
 

  

  

∂ lnγ 1

∂ ln x1

= x1

∂ lnγ 1

∂x1

= x1 1− x1( )2
2 A21 − A12( )⎡⎣ ⎤⎦

− 2x1 1− x1( ) A12 + 2 A21 − A12( )x1
⎡⎣ ⎤⎦

 

 
Now we can plot D12/D12o as a function of x1. 
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18. A student tries to dissolve a congealed mass of NaOH by adding water to the beaker. The 

concentration profile of NaOH in the water above it was measured and found to be: 
 
  

  
1− xa = 1.143( )z / L−1

 
 
 The initial and reference temperature of the water is 0 ˚C. ct = 63055 mol/m3; Dab = 1.0x10-9 

m2/s; L = 5 cm. Assume the water properties are constant at the reference temperature values. 
Data on the partial molar enthalpies of solution as a function of temperature and hence the 
partial molar heat capacities can be obtained crudely from the enthalpy concentration 
diagram (W.L. McCabe, Trans. AIChE 31, 129 (1935)). If the thermal conductivity is taken 
as that of water, what is the temperature profile? 

 
                                        
 
 
 To solve this problem we need to go back to the example in section 2.10.  For a 

concentration profile like that listed above, the flux of hydroxide and temperature 
profile are: 

 

  

  

Naz =
ct Dab

L
ln 1.143( )

θ
θo

= exp
NazCpa

k
z

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 

 
 Here we need to assume a temperature between the reference temperature and the 

highest temperature we would have.  Thus this is a trial and error approach.  For the 
concentration range listed, we can consult the enthalpy-concentration diagram and get 
an estimate of the heat capacity. 

 



  Chapter 2 Problems 46 

  

  

N
az

=
c
t
D

ab
L

ln 1.143( ) = 63055 mol/m3( ) 1×10−9 m2 /s( )
0.05m

ln 1.143( )

= 1.69 ×10−4 mol / m2s

Cpa = 2470J / kgK

θ
θo

= exp
NazCpa

k
z

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= exp
1.69 ×10−4 mol / m2s( ) 2470J / kgK( ) 0.04kg / mol( )

0.6W / mK
z

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= exp 0.03z( )
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19. A young engineer has the bright idea of trying to separate methanol and water by centrifugation. The 
target system is an antifreeze consisting of 30 mol % methanol. The partial molar volumes and pure 
component molar volumes at 25 ˚C are: 

 
 Vm  = 38.632 cm3/mol   Vw = 17.765 cm3/mol 

 Vm = 40.727 cm3/mol   Vw   = 18.068 cm3/mol 
 
 Assuming a centrifuge like that in Figure P2.19 operates at 20,000 rpm and a temperature of 25 ˚C, what 

would be the concentration of m at r = 0.2 m? What is the maximum separation ratio there; xmL/xwL? 
Assume the pressure gradient,   ∂P ∂r = 4π 2ω 2ρr , where ω is the revolution frequency and ρ is the fluid 
density. 

                                        
 
The pressure gradient in the system is only in the radial direction and is defined by: 
 

 
  
∂P
∂r

= 4π 2ω 2ρr   
 
The fluxes for "a" and "b" are as follows: 
 

   

jm = 0 = −
ct

2

ρ
⎛

⎝⎜
⎞

⎠⎟
Mwm MwwDmw

∂ln am

∂ln xm

⎛

⎝⎜
⎞

⎠⎟ T ,P


∇xm +

Mwmxm

RT
Vm

Mwm

− 1
ρ

⎛

⎝⎜
⎞

⎠⎟

∇P

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

jw = 0 = −
ct

2

ρ
⎛

⎝⎜
⎞

⎠⎟
Mwm MwwDmw

∂ln aw

∂ln xw

⎛

⎝⎜
⎞

⎠⎟ T ,P


∇xw +

Mwwxw

RT
Vw

Mww

− 1
ρ

⎛

⎝⎜
⎞

⎠⎟

∇P

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 
Assuming the solution is (am = xm) and getting rid of as many constants as possible we find: 
 

  

dxm

dr
+

Mwmxm

RT
Vm

Mwm

− 1
ρ

⎛

⎝⎜
⎞

⎠⎟
dP
dr

=
dxm

dr
+

Mwmxm

RT
Vm

Mwm

− 1
ρ

⎛

⎝⎜
⎞

⎠⎟
4π 2ω 2ρr = 0

dxw

dr
+

Mwwxw

RT
Vw

Mww

− 1
ρ

⎛

⎝⎜
⎞

⎠⎟
dP
dr

=
dxw

dr
+

Mwwxw

RT
Vw

Mww

− 1
ρ

⎛

⎝⎜
⎞

⎠⎟
4π 2ω 2ρr = 0

 

 

  

d ln xm

dr
+ 4π 2ω 2

RT
ρVm − Mwm( )r = 0

d ln xw

dr
+ 4π 2ω 2

RT
ρVw − Mww( )r = 0

 

 
Now we multiply the equation for species "m" by  Vw   and the equation for species "w" by 

 Vm   and subtract "m" from "w" to find: 
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Vw

dxm

xm

− Vm

dxw

xw

= 4π 2ω 2

RT
Vw Mwm − Vm Mww( )rdr   

 
Assuming the only variables are xm and xw we can integrate the equation to give: 
 

  

xm

xmo

⎛

⎝⎜
⎞

⎠⎟

Vw xwo

xw

⎛

⎝⎜
⎞

⎠⎟

Vm

= exp
2π 2ω 2

RT
Vw Mwm − Vm Mww( )r 2⎡

⎣
⎢

⎤

⎦
⎥   

 
Here we have used the condition that at r = 0 we have xm = xm0 and xw = xw0. Taking the log 

of both sides and putting in the numbers: 
 

  

  

17.765 cm3

mol
⎛
⎝⎜

⎞
⎠⎟

ln
xm

0.3
⎛
⎝⎜

⎞
⎠⎟
+ 38.632 cm3

mol
⎛
⎝⎜

⎞
⎠⎟

ln 0.7
1 − xm

⎛

⎝⎜
⎞

⎠⎟

= 38.632 cm3

mol
⎛
⎝⎜

⎞
⎠⎟

0.018kg( ) − 17.765 cm3

mol
⎛
⎝⎜

⎞
⎠⎟

0.032kg( )⎛

⎝
⎜

⎞

⎠
⎟

2π 2 20000 60 s−1( )2
0.2m( )2

8.314 J
mol • K

⎛
⎝⎜

⎞
⎠⎟

298K( )

xm = 0.34

 

 
  xmR/xwR = 0.52 
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20. Often we have a multi-component mixture of gases and do not want to deal with the 

diffusion coefficients for every pair of gases. We would like to define a pseudo-binary 
diffusion coefficient for each species relative to the mixture. 

 
 a) Show how using Fick's Law in the form: 
 

  
    


Ni = −ctDim


∇xi + xi


N j

j=1

n

∑  

 
 and the Stefan-Maxwell relations, equation (2.77) we can define such a coefficient based 

on individual binary diffusion coefficients for each pair of gases. Dim is the pseudo-binary 
diffusion coefficient. 

 b) Show in the limit where x1 ≈ x2 ≈ 0 that: 
 

  
   
D3m =

D31D32

D31 + D32

D2m = D23 D1m = D13  

 
 c) Use your result to calculate the pseudo-binary diffusion coefficient for  
  each species in the system H2O, He, N2: 
 
  H2O – He 0.908x10-9 m2/s  H2O – N2 0.256x10-9 m2/s 
  He – N2 0.687x10-9 m2/s 
 
 d) Can your results be extended to higher order mixtures? 
 
                                        
 
 
 The Stefan-Maxwell relations for the three components are: 
 

  

    


∇x1 =

1
ct D12

x1


N2 − x2


N1( ) + 1

ct D13

x1


N3 − x3


N1( )


∇x2 =

1
ct D21

x2


N1 − x1


N2( ) + 1

ct D23

x2


N3 − x3


N2( )


∇x3 =

1
ct D31

x3


N1 − x1


N3( ) + 1

ct D32

x3


N2 − x2


N3( )

 

 
 Fick's Laws are: 
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
N1 = −ctD1m


∇x1 + x1


N1 +


N2 +


N3( )


N2 = −ctD2m


∇x2 + x2


N1 +


N2 +


N3( )


N3 = −ctD3m


∇x3 + x3


N1 +


N2 +


N3( )

 

 
 Substituting for the   


∇xi  from the Stefan-Maxwell relations and solving for the D im 

yields: 
 

  

   

D1m = −
D12 D13 x1N1 + x1N2 + x1N3 − N1( )

x2 D13N1 − x1D13N2 + x3D12 N1 − x1D12 N3

D2m =
D21D23 x2 N1 + x2 N2 + x2 N3 − N2( )

x2 D23N1 − x1D23N2 − x3D21N2 + x2 D21N3

D3m =
D31D32 x3N1 + x3N2 + x3N3 − N3( )

x3D32 N1 − x1D32 N3 + x3D31N2 − x2 D31N3

 

 
 With   x1 ≈ x2 ≈ 0  we arrive at: 
 

  
   
D3m =

D31D32

D31 + D32

D2m = D23 D1m = D13  

 
 Notice that since water and helium are extremely dilute, their interaction is 

inconsequential and so D21 never enters into the final solution. 
 
 Plugging in the numbers from part (c) with H2O (1), He(2), and N2(3), we have: 
 

  

   

D3m =
0.256 ×10-9  m2 /s( ) 0.687 ×10-9  m2 /s( )

0.256 ×10-9  m2 /s( ) + 0.687 ×10-9  m2 /s( ) = 0.187 ×10-9  m2 /s

D2m = 0.687 ×10-9  m2 /s

D1m = 0.256 ×10-9  m2 /s

 

 
 The results are easily extended to higher order mixtures though the procedures become 
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quite cumbersome. 
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21. A mixture of gases, "a" in "b" are to be separated from one another by thermal diffusion. A 
set of experiments are conducted at various temperatures to measure the thermal diffusion 

coefficients. Defining the separation ratio as
  

ka
T

kb
T , what are the best temperature conditions 

with which to operate the device? 
 
                                        
 
 

Experimental Data 
 

T1 T2 xa2 – xa1 xb2 – xb1 ka
T  kb

T  
25 50 0.05 0.03 -0.072 0.0433 

 75 0.08 0.05 -0.073 0.0455 
 100 0.10 0.06 -0.072 0.0433 

50 75 0.07 0.01 -0.173 0.0247 
 100 0.120 0.017 -0.173 0.0245 
 150 0.190 0.027 -0.173 0.0246 

100 150 0.06 -0.02 -0.148 -0.0493 
 200 0.103 -0.034 -0.149 -0.0491 
 300 0.163 -0.054 -0.148 -0.0492 

 
 To solve this problem we must first calculate the kT ' s . These are shown in the table. 

Then we must remember that if kT is positive the substance moves from the hot region 
to the cool region.  If kT is negative, the substance moves from the cool to the hot region.  
Thus we want the kT's to have opposite sign.  With that in mind and the separation 
ratio defined above, the optimum place to operate the device seems to be T2 = 100,  
T1 = 50. 
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22. In sintering of materials, we can have mass flow in the absence of a concentration gradient 
via surface diffusion. In this process, surface molecules redistribute themselves driven by a 
gradient in surface curvature. This phenomenon causes metals to bead up on surfaces when 
heated and other materials to redistribute themselves over time. It is of fundamental 
importance to the semiconductor industry. If we express the mass flux as: 

 

 

 


Na = −


∇ γκ( ) κ =

± d
2y
dx2

1 + dy
dx

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢

⎤

⎦
⎥

3/2  

 
 where γ is a surface energy parameter and κ is the curvature, what are the two possible 

equilibrium surface shapes? 
 
                         
 
 At equilibrium, the mass or molar flux will be equal to zero.  Thus: 
 

 

 

−

∇ γκ( ) = 0

γκ = C
 

 
 There are two possible shapes where the curvature would be a constant.  One is flat 

since the curvature is identically zero and the other is spherical where the curvature is 
the inverse of the radius of the sphere. 
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23. Let's put some numbers to our well example from the text.  Fracking for natural gas promises 
to be a clean technology because we are probing so deeply for the gas.  Such deep wells 
mean there might be a considerable difference in gas composition from the bottom to the top.  
The well contains methane and propane and is 2000 m deep.  You may assume the mixture 
behaves ideally, but as the well gets deeper, the temperature rises, 20˚C for every kilometer 
in depth.  At the surface, the composition is 80% methane, 20% propane, and the surface 
temperature is 25 ˚C.  What is the composition at the bottom of the well? 

 
We can start with the equation from our example. 
 

 

g
RT

MwbVa − MwaVb( )dy =Vb

dxa

xa

−Va

dxb

xb

 

 
For an ideal gas,  Va = xaV Vb = xbV  and so substituting into the above gives: 
 

  

g
RT

Mwbxa − Mwaxb( )dy =
xb

xa

dxa −
xa

xb

dxb

xb = 1− xa dxb = −dxa

g
RT

dy =
1− 2xa

xa 1− xa( ) Mwa + Mwb( )xa − Mwa
⎡⎣ ⎤⎦

dxa

 

 
The temperature obeys:    T = T0 + ΔTy .  Substituting and integrating using the boundary condition 

that y=0, xa = xa0 gives: 
 

  

g
RT

ln
T0 + ΔTy

T0

⎡

⎣
⎢

⎤

⎦
⎥ =

1
Mwb

ln
xa −1
xao −1

⎡

⎣
⎢

⎤

⎦
⎥ +

1
Mwa

ln
xao

xa

⎡

⎣
⎢

⎤

⎦
⎥ +

ln
Mwa + Mwb( )xa − Mwa

Mwa + Mwb( )xao − Mwa

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
Mwa

− 1
Mwb

⎡

⎣
⎢

⎤

⎦
⎥

 

 
Now for methane (Mwa = 16; Mwb = 44; T0 = 298; ΔT = 0.02; xao = 0.8) we find: 
 
y=2000 xa = 0.724. 
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24. Our electrophoresis sample needs some numbers to make sense of the concentration that can be achieved.  
Let's assume that we are operating at room temperature, 298 K.  We have adjusted the pH of the solution 
so that the protein we are trying to separate has a valence charge now of -5.   
 
a) If the initial protein concentration is 10 mmol and we apply a voltage of +100 volts at the anode and 

ground (0V) the cathode, plot the concentration profile.   
b) What is the maximum concentration that can be acheived? 

 

   

βe =
zeaFa

RT
=

−5 96485 C
mol

⎛
⎝⎜

⎞
⎠⎟

8.314 J
molK

⎛
⎝⎜

⎞
⎠⎟

298K( )
= −194.7 C

J  

 

  

ca

cao
=

βe Φ+ −Φ–( )
exp −βeΦ

−⎡
⎣

⎤
⎦ − exp −βeΦ

+⎡
⎣

⎤
⎦

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

exp −βeΦ⎡⎣ ⎤⎦

=
−194.7 100− 0( )

exp 194.7 0( )⎡⎣ ⎤⎦ − exp 194.7 100( )⎡⎣ ⎤⎦

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

exp 194.7Φ⎡⎣ ⎤⎦  

 
 The plot is basically an exponential decay but one that is shaped like an “L”.  The maximum 

concentration one can achieve is easily seen from the equation.  At the point where Φ  = 100 we 
achieve a 194700x increase in concentration over the bulk. 

 
 


