$v_0 = 12 \text{ mi/h} = 17.6 \text{ ft/s} \text{ and } x_0 = 0.0 \text{ ft.}$

Interval $0 \le t \le 5$ s.

$$\frac{dv}{dt} = a = t \text{ ft/s}^2$$
. By integration, $v = \frac{t^2}{2} + 17.6 \text{ ft/s}$.

$$\frac{dx}{dt} = v$$
 and $x = \frac{t^3}{6} + 17.6 t + 0.0 ft$.

When t = 5 s, v(5) = 30.1 ft/s and x(5) = 108.8 ft.

Interval $5 \le t \le 15$ s or $0 \le (t - 5) \le 10$

$$\frac{dv}{dt}$$
 = a = 5 ft/s² and v = 5(t - 5) + 30.1 ft/s.

$$\frac{dx}{dt}$$
 = v. Therefore, x = 5 $\frac{(t-5)^2}{2}$ + 30.1(t - 5) + 108.8 ft.

When t = 15 s, v(15) = 80.1 ft/s and x(15) = 659.8 ft.

Interval 15 \leq t \leq 20 s or $0 \leq$ (t - 15) \leq 5

$$\frac{dv}{dt} = a = -\frac{8}{5}(t - 15) \text{ ft/s}^2$$
 and $v = -\frac{8}{5}\frac{(t - 15)^2}{2} + 80.1 \text{ ft/s}.$

$$\frac{dx}{dt}$$
 = v. Consequently, $x = -\frac{8}{5} \frac{(t-15)^3}{6} + 80.1(t-15) + 659.8$ ft.

When t = 20 s, v(20) = 60.1 ft/s and x(20) = 1027.0 ft. Answer

The relationship between speed and time is plotted below.

Note that the shape of the v-t curve can be inferred directly from the shape of the a-t diagram. At t=0, the slope of the v-t diagram is zero since a=0. The slope increases in a linear fashion until t=5 s. Between t=5 s and t=15 s, the slope remains constant. At t=15 s, it abruptly changes to zero, and then it decreases linearly.

From the above diagram tan $\alpha = 0.02$ and $\alpha = 1.15^{\circ}$.

Also
$$D_b = x \cos \alpha = x$$
.
Eq. 2.2.6 gives $x = \frac{v^2 - v_0^2}{(2)(8)}$ and Eq. 2.2.13 yields $D_b = x = -\frac{v^2 - v_0^2}{2g(f + 0.02)}$

Therefore 16 = 2g(f + 0.02) = 64.4 (f + 0.02).

Solving for the coefficient of friction, f = 0.23.

This value suggests a wet pavement.

2/3

Assuming the case of constant acceleration,

$$v = at + v_0$$
 and $(v^2 - v_0^2) = 2a(x - x_0)$ [Eqs. 2.2.4 & 2.2.6]

The movement from the ground floor to the restaurant level involved:

Total distance = 140 ft.

Time to reach cruising velocity when $a = 5 \text{ ft/s}^2 = \frac{20}{5} = 4 \text{ s.}$

Time to stop from cruising velocity when $d = 4 \text{ ft/s}^2 = \frac{20}{4} = 5 \text{ s.}$

Acceleration distance = $20^2/[2(5)] = 40$ ft.

Deceleration distance = $20^2/[2(4)] = 50$ ft.

Cruising distance = 140 - 40 - 50 = 50 ft.

Cruising time at maximum cruising speed = 50/20 = 2.5 s.

During the movement from the restaurant level to the observation deck the elevator did not reach cruising velocity. The total distance of 20 ft consisted of accelerating $(\mathbf{x}_{\mathbf{a}})$ and decelerating $(\mathbf{x}_{\mathbf{d}})$ distances, i.e.,

$$x_a + x_d = 20 \text{ ft.}$$

2/3 (cont.)

Hence,
$$\frac{v^2}{2(5)} + \frac{v^2}{2(4)} = 20 \text{ ft.}$$

Consequently, the highest speedreached was v = 9.4 ft/s. In addition,

Acceleration distance \approx 8.9 ft.

Deceleration distance = 11.1 ft.

Acceleration time $\simeq 1.9 \text{ s.}$

Deceleration time = 2.4 s.

The required diagrams are drawn below.

2/4
$$A = 100 \text{ ft}^2 \qquad W = 40,000 \text{ lb} \qquad \alpha = 100 \text{ lb/ft}^2 \qquad \beta = 3.33 \text{ lb/ft}^2 - s$$
a)
$$F = (\Delta P)A = (W/g)a$$

Solve for acceleration in terms of pressure difference ΔP :

$$a = \frac{9}{W} A (\Delta P) = \frac{32.2}{40,000} (100)(\Delta P) = 0.0805(\Delta P)$$

Also, $v = \int a dt$ and $x = \int v dt$.

For simplicity, set $t_0 = 0$ and $x_0 = 0$.

2/4 (cont.)

Acceleration phase $(0 \le t \le t_1)$:

$$a = 0.0805(100 - 3.33t) = 8.05 - 0.268t ft/s2$$

$$v = 8.05t - 0.268(t2/2) + v0 = 8.05t - 0.134t2 ft/s (Eq.1)$$

$$x = 8.05(t2/2) - 0.134(t3/3) + x0 ft.$$

According to the given a-t diagram, a = 0 when t = t_1 . Consequently, $t_1 = (8.05)/(0.268) = 30$ s. At this instant, cruising velocity is attained: $v_{\text{cruise}} = 8.05(30) - 0.134(30)^2 = 120.9$ ft/s.

The distance traveled during the acceleration phase is $x_a = 2416.5$ ft.

<u>Deceleration phase</u> $(t_2 \le t \le t_3)$:

$$a = 0.0805(-3.33)(t - t_2)$$
 where t_2 depends on station spacing.

$$v = -0.268 \frac{(t - t_2)^2}{2} + v_{cruise} = 120.9 - 0.134(t - t_2)^2$$
 (Eq.2)
 $(x - x_2) = 120.9(t - t_2) - 0.134 \frac{(t - t_2)^2}{3}$

The deceleration time may be computed via Eq. 2 or by symmetry with the acceleration phase to be $(t_3-t_2)=30\,\mathrm{s}$. By similar reasoning, the deceleration distance x_d equals the acceleration distance x_a , that is 2416.5 ft.

Cruising phase ($t_1 \le t \le t_2$):

The total cruising distance equals the station spacing (1 mi = 5280 ft) minus $(x_a + x_b)$, or $x_{cruise} = 447$ ft. The required equations for the cruising phase are:

$$a = 0 \text{ ft/s}^2$$
 $v = 120.9 \text{ ft/s}$ and $x = 120.9(t -30) + 2416.5 \text{ ft.}$

b) The v-t diagram for the entire movement is shown below:

