CHAPTER 1
Problem 1-1

(a) Write the acceleration as

af, t <t

a(t) =
0,1>1,

Thus the velocity and position are, respectively, given by

t 06t2/2, t < Z,
W) = fa(A)dA =
0 ary/2, 1> 1
and
t ot3/6, <,
x(t) = f v(A)dA = .
0 ato/6 + atg(t - 1)/2, t > 1,

For £, =72 s and o = 5/9 m/s?, we have x(f) = (5/54)F,t < 72's. Att= t, =72 s (burnout), we have
x(ty) = 35.56 km.
(b) See the figure below for the integrator.
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v = oo [ v,(A)dA

Assume that R, << R. The input impedance to the op-amp integrator is therefore much larger than
the output impedance of the previous stage, and

R,

vi(0) = vo(®)

1Py
From Example 1-2,
1| Be? t?
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RC\ 2 " 2RC

Therefore,

(__B )A?d/\

t
1 2
V() = —— -
0 Rchl+R2k 2RC
0

Integrating and setting ¢ = ¢, we obtain

2
V2(to) = R2 ( Bt() ]( ‘o ] =10V

R, +R,\ 2RC)\ 3RC

The second factor on the right is 10 V because of the maximum output limitation on the first
integrator. Thus, we require that

R2 tO -1
R, +R,\ 3RC

For example, from Example 1-2 we have RC = 0.36 s. With #,=72s and R, = 10 k ohms, we get
R, =152 ohms.




Problem 1-2

(a)Letn=0,1,2,3,...,N. Then

w(I) = v0) + Ta(T) (a)
v2T) = w(T) +Ta(2T) (b)
VINT) = v[(N - DT] + Ta(NT) (c)

Substitute (a) into (b) and so on until (c is reached. This gives

N
VINT) = v(0) + Ty a(nT)
n=1

(byLetn=0,1,2,3,..,N. Then

w(I) = v(0) + (172)[a(0) + a(D)] (a)
v2T) = w(T) + (T1)[a(T) + a2D)] (b)
VINT) = v[(N - DT] + (T12){al(N - DT] + a(NT)} (c)

Substitute (a) into (b) and so on until (¢ ) is reached. The result is as given in the problem statement.
Problem 1-3

(a) A maximum departure of the weight from equilibrium of 1 cm requires a spring constant of

Ma,,, _ (0.002)(20)
x 0.01

max

K - = 4 kg/s?

(b) For a minimum increment of 0.5 mm = 0.0005 m, we have

KAx_
Ag o KBt _ 40.0005) _

i 1 m/s?
M 0.002

(c ) The velocity is given by

' t

201, 0 < 50
v(®) = fa(l)d)» - f 20dA = {1006 t : go 2
0

0



Problem 1-4

K is the same as in Example 1-1 because M, x,,,, and a,,,, are the same. Also, Aa,;, is the same. The
velocity profile is

t

fzodx =201, 0 <t< 10
0

b = 200, 1? <t<?20

200 + f 20dA = 200 +20(z - 20), 20 < ¢ < 30

20
| 400, ¢ > 30

Problem 1-5

From (1-15) and using the x() given in the problem, we have

s(1)

1

cos(w ) + afcos[w,(t - 27)]

[1+ chos(Z(oot)]cos((oot) +af sin(2w,T) sin(w)¥)
A(T)cos[w,yt - O(1)]

= A(t)cos B(t)cos(w,t) + A(T)sin O(t) sin(w,f)

Set coefficients of like sin/cos terms equal on each side of the identity to obtain

A(T)cos (1)
A(T)sin (1)

1 + afcos(Rw,T)
«f sin(2w,T)

Square and add to obtain

A1) = ‘/1 + 2P cos(2w,7) + (af)?

Divide the second equation by the first to obtain

afsin(2w,T)

_Sin& = tane(T) =
cos 0(7) 1 + afcos(2w,T)



Problem 1-6

Sketches of the analog and sampled signals for both cases are shown below[(a) top and (b) bottom]:

15 I T T T | T I T T T
—— sampled signal
-------- cont. time signal
1k ...
¥

| Il
2 3 4 5 6 7 8 9 10
t
1.5 T T T T ' ! I l l I
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Problem 1-7

(a) The impulse-sampled signal is

Ximp. samp(®) = €OS27) Y 8( - 0.1n)

o

)" cos(2nt)d(r - 0.1n)

n = -oco

oo

Y cos(0.2mn)d(t - 0.1n)

n = -oo

1l

where property (1-59) for the unit impulse has been used to get the last result.
(b) The unit-pulse train sampled signal is

Xunit pulse samp(t) = COS(ZTI:t) E 6[f - Oln]

oo

Y cos(2mt)d[z - 0.1n]

n = -oco

oo

= Y cos(0.27mn) [z - 0.1n]

n = —oco

where the fact that the unit pulse is 1 for its argument 0 and O otherwise has been used.
Problem 1-8

(a) The signal can be developed in terms of equations as follows:

{1, (0.1 < 172
H©.17) = {O, otherwise

_ 1, |f| <102 =5
0, otherwise

This is a rectangular pulse of amplitude 1 between -5 and 5 and O otherwise. A sketch will be given

at the end of the problem solution.

(b) Following a procedure similar to that of (a) one finds that this is a rectangular pulse of amplitude
1 between -0.05 and 0.05 and O otherwise. A sketch will be given at the end of the problem solution.
(c ) This is a rectangular pulse of amplitude 1 between 0 and 1 and O otherwise. A sketch will be

given at the end of the problem solution.

(d) This is a rectangular pulse of amplitude 1 between 0.5 and 4.5 and 0 otherwise. A sketch will

be given at the end of the problem solution.



(e) The first term of this signal is a rectangular pulse of amplitude 1 between 0 and 2 and 0
otherwise. The second term is a rectangular pulse of amplitude 1 between 0.5 and 1.5 and O
otherwise. Where both pulses are nonzero, the total amplitude is 2; where only one pulse is nonzero
the amplitude is 1. A sketch is provided below.

The MATLAB program below uses the special function given in Section 1-6 (page 32) of the text
to provide the plots.

% Sketches for Problem 1-8

%

t=-6:0.0015:6;

xa = pls_fn(0.1%*t);

xb = pls_fn(10*t);

xc = pls_fn(t - 0.5);

xd = pls_fn((t - 2)/5);

xe = pls_fn((t - 1)/2) + pls_fn(t - 1);

subplot(3,2,1),plot(t, xa,'-w"), axis([-6 6 0 1.5]),x]abel('t"),ylabel('xa(t)")
subplot(3,2,2),plot(t, xb,-w"), axis([-.1 .1 0 1.5]),xlabel('t"),ylabel('xb(t)")
subplot(3,2,3),plot(t, xc,'-w"), axis([-1 2 0 1.5]),xlabel('t"),ylabel('xc(t)")
subplot(3,2,4),plot(t, xd,-w"), axis([-1 5 0 1.5]),xlabel('t"),ylabel('xd(t)")
subplot(3,2,5),plot(t, xe,'-w"), axis([-1 3 0 2.5]),xlabel('t"),ylabel('xe(t)")
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Problem 1-9

(a) 27tfy = 507, so T = 1/f, = 1/25 = 0.04 s. (b) 27f, = 607, so T, = 1/f, = 1/30 = 0.0333 s.

(¢)27f, =707, so T, = 1/f, = 1/35 = 0.0286 s. (d) We have 507 = 2nmf, and 607 = 27tnf,, where m
and n are integers and f; is the largest constant that satisfies these equations. The largest f; is 5 Hz
withm =5 and n = 6. (¢) We have 507 = 2nmf, and 70m = 27tnf,, where m and n are integers and
Jo1s the largest constant that satisfies these equations. The largest f,is 5 Hz withm =5 andn="7.

Problem 1-10

(a) |Al = 4.2426; angle(A) = 0.7854 radians; B = 5.0 + 8.6603, so Re(B) = 5 and Im(B) = 8.6603.
(b) A+B =8.0+,11.6603. (c)A - B=-2.0-;5.6603. (d) A*B =-10.9808 + j40.9808. (¢) A/B =
0.4098 - j0O.1098.

Problem 1-11

(@) 27tfy = 10w, so Ty = 1/f, = 1/5=0.2 5. (b) 2nfy = 177, so T, = 1/f, = 1/8.5=0.1176 s.

(¢)2nfy =197, s0 Ty = 1/f, = 1/9.5 = 0.1053 5. (d) We have 10w = 2nmf; and 177 = 27nf,, where
m and n are integers and f; is the largest constant that satisfies these equations. The largest f; is 0.5
Hz with m = 10 and n = 17. (¢) We have 107 = 2numf; and 197 = 27tnf,, where m and n are integers
and f, is the largest constant that satisfies these equations. The largest f; is 0.5 Hz with m = 10 and
n=19.(f) We have 177 = 2numf, and 197 = 2nnf;, where m and n are integers and f; is the largest
constant that satisfies these equations. The largest f, is 0.5 Hz with m = 17 and n = 19.

Problem 1-12

(a) Written as the real part of rotating phasors:

xa(t) - Re[zej(IO‘n:t + 11:/6)]; xb(t) — Re[sej(”m - Tt/4)]
X (t) - Re[3ej(10m -n/3 - Tt/Z)] _ Re[3ej(10m - 51:/6)]
¢
xd(t) - Re[2ef“°’” +Tl6) | §e/(Tmt - n/4)]; xe(t) - Re[zej(IOnt +7/6) 3 /(10ms - 51r/6)]
xf(t) — Re[sej(l7nt—n/4) + 3ej(10nt—511:/6)]

(b) In terms of counter rotating phasors, the signals are:

xa(t) - [ej(IOm+n/6) + e—j(lOnt+n/6)]; xb(t) — [2.5ej(l7m—n/4) + 2.Sej(17m~n/4)]
xc(t) - [l.sej(IOnt—Sn/6) +1.5¢ —j(lOm—Sn/6)]
x,(t) = [e/A0m +7/6) o ~(10RL + /) | 9 5, jTHE=T4) | o 5, (1T -]

xe(t) — [ej(IO‘nt+‘r|:/6) + e—j(lO‘n:t+n/6) + l.sej(IOnt—S‘n/6) +1.5¢ —j(IOm—Sn/G)]

xf(t)

[2 Sej(l7m‘ - /4) +2.5¢ -j(17mt ~ m/4) +1 5ej(10m - 5m/6) +1.5¢ -j(10met - 511:/6)]



(¢ ) Single-sided spectra are plotted below. Double-sided amplitude spectra are obtained by halving
the lines and taking mirror image; phase spectra are obtained by taking antisymmetric mirror image.
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Problem 1-13

(a) Written as the real part of rotating phasors:

x,(0)
x ()

Re[ej(SOTEt - Tl:/2)]; xb(t) _ Re[€j60m]; xc(t) _ Re[ej70m]
Re[ej(SO‘m - 1/2) + €j60m]; Xe(t) — Re[ej(SOm - m/2) + ej70‘n:t]

(b) In terms of counter rotating phasors, the signals are:

x,(1) = Re[0.5¢/0M ™2 +0.5¢ SOOI x (1) = Re[0.5¢/5™ +0.5¢ J50™]
x () = Re[0.5¢/79™ + 0.5¢ /70
xd(t) - Re[O.Sef(so’” - 1/2) +0.5¢ -j(507t - m/2) + 0~5€j60m + 0.56 —j60m]
X (t) _ RC[0.5€j(50m -n2) 4 0.5¢ ~j(50mt - m/2) O‘Seﬂom + +0.5¢ ~j70m]
e

(¢ ) The single-sided amplitude and phase spectra are shown below. See Prob. 1-12¢ for comments
on obtaining double-sided spectra from single-sided spectra.
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Problem 1-14
(a) A sketch is given below:
From the figure, it is evident that x(£) = u(f) + u(t-3)- u(t-5)- u(t- 6).
3
2.5 .
2 -
=1.5F —
1l i
0.5 -
—1 [o] ‘; é Ctli 4‘1- é 6 7

(b) The derivative of x() is dx(£)/dt=0(t) + & (t-3)- 6 (t-5)- & (¢- 6)
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