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E -E, =(1/2)(E,e™ + E e)-(1/2)(E,e”™ + E,e""), where

Re(z) = (1/2)(z+z2").
E -E,=(1/4)|E, -E,e™ +E, -E,e" +E,-E, +E, -E,].

The last two terms are time independent, while <El -Eze'Zi“”> — 0 and

<El* -E;eZi””> — 0 because of the 1/T@ coefficient. Thus
1, =2(E,-E,) = (1/2)E, -E; + E; -E,).

The largest value of r, —r, is equal to a. Thus if & =¢,, & =k(r, —r,) varies from 0 to ka.
If a> A, cosd and therefore I, will have a great many maxima and minima and therefore
average to zero over a large region of space. In contrast if a < A, d varies only slightly
from 0 to ka < 2. Hence 1,, does not average to zero, and from Eq. (9.17), I deviates

little from 4/,. The two sources effectively behave as a single source of double the original strength.

Dropping the common time factor E, = E, exp(27ziz/7) and E, = E,, exp[(27i/A)(zcos O+ ysin )],
adding these at the z = 0 plane yields E = E {1 +exp[(27i/A)(ysin&)]}. The absolute square of this is
the irradiance viz.

1(y)=2E, {1 + cos(%ysin Hﬂ

and the rest follows from the identity cos2@ =2cos* @—1. The cosine squared has zeros at
y=mA/(2sinf) where m is an odd integer. The fringe separation is A/sinf. As 6 increases,

the separation decreases.

A bulb at S would produce fringes. We can imagine it as made up of a very large number of incoherent
point sources. Each of these would generate an independent pattern, all of which would then overlap.
Bulbs at S, and S, would be incoherent and could not generate detectable fringes.

y, =smAla=145x10" m and 4 =0.0145m:v =0/ =23.7 kHz.
This is Young’s Experiment with the sources out-of-phase.

This is comparable to the “two-slit” configuration, (Figure 9.11), so we can

use (9.29) asind, = mA (6, may not be “small”). Let m = 1, sinf = /(5" + v, so,

ay=A(s> +y)"?; (a® =A)y = A%s%;
y=As/(a>—y*)"?. c=VA,
so A=c/v=(3x10° m/s)/(1.0x10° Hz) =300 m.
y = (300 m)(2000 m)/((600 m)* —(300 m)*)"* =1.15%10° m
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97  Ay=321
a
S=ﬂ

A
Using a=1x10"" m, A =589 nm, Ay =3.00 mm

L (X107 m)3x 10 m)

580x107m 20om

98 Ay, =-1
a

vac

Using a=1x10"m, A, =589.3nm, s=5.000m

Vore = w(s.s% %107 m) = 2.9465 mm
(1%x107 m)
_C_Vh _A
v vi A
izt
n
Ayair i _iﬁ
a an

5.000m 5.893x107 m

Yair = 3 =2.9456 mm
(1x10™” m)  1.00029

Thus the pattern expands from 2.946 mm to 2.947 mm.
99 (a) n—r,=%A/2, hence asin€ =+A4/2 and
6, =+ A/2a=+(1/2)(632.8x107m)/(0.200 x 10~ m)
=41.58x107 rad,
or since
y, =56, =(1.00 m)(£1.58x 10~ rad) = +1.58 mm.
(b) ys =s5A/a=(1.00m)5(632.8x107)/(0.200x 10~ m)=1.582x 107> m. (c) Since the fringes vary
as cosine-squared and the answer to (a) is half a fringe width, the answer to (b) is 10 times larger.

A
9.10 y =-mi="mZ
a a n

Using a=1x 107 m, A, =589.3nm, s=3.000m, n=1.33

_3.000m 5.893x107 m
n (1x107 m) 1.33

=+1.329 mm

9.11 @, is “small,” so we can use (9.28) 6, =mA/a, 6, isradian,

m

a=mi/0, =[4(6.943x107 m)]/[1°(27 rad/360°)] =1.59x 10" m.

m
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Ay = (s/a)A, so,

s=aAy/A=[1.0x10"* m)10x10~> m)]/(4.8799x 107" m) =2.05 m.

(9.28) 6, =mAfa. Want 6 4 =0, > (DA g /0= (2) Ao 18 Ao =390 N,
Y = Sma
a
0”1 = ynl = M
s a
=f
mf A
= fO —_—
ym f m a
-, Min
ey
/ v

A
=

h
0=—
f 2
A
n=r =E=a9
o=>
2a
h fA
Z-fe=2=
2 f 2a
N I2
a

Follow section (9.3.1), except that (9.26) becomes r, —r, = (2m"—1)(4/2) for destructive interference,

where m’ =1, 2, ..., sothat (2m’—1) is an odd integer. This leads to an expression equivalent to
(9.28), 8., =(2m—-1)A/2a.

m
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917 y,=—mA

Using a=2.7x10" m, s=4.60m, m=5:

-4
A=(5x10% m)2 20T m _ segim
5(4.60 m)

9.18 Follow section (9.3.1), except that (9.26) becomes r, —r, + A = mA, where A = Optical path differences
in beam. Following r,, A =nd (for 8, “small”).
(r—r)=mA-A; a6, =mA—nd; 6, =(mA—nd)/a.

9.19 Asin section (9.3.1), we have constructive interference when OPD = mA. There is an added
OPD due to the angle, 6, of the plane wave equal to a sin 6, so (9.26) becomes r, —r, +asinf = mA.
(9.24) 6, = y/s and (9.25) r, —r, = ay/s are unchanged, for small 8, so

rn—r=mA—asin@=a(y/s)=ab,; 6,6 =(mAla)—sinb.

m?

9.20 (9.27) Y, = (slaymA; y, o =[(2.0m)/(2.0x 107 m)](D)(4 x 107" m)
=4.0x10" m.
Yo =[(2.0m)/(2.0x 107 m)](2)(6x 107" m) =12.0x 10" m.
Distance =8.0x 10~ m.
921 1} =a’+r7 —2ar,cos(90°—6). The contribution to cosd/2 from the third term in the Maclaurin

expansion will be negligible if

(k/2)(a® cos® 0/2r) < 7/2; therefore n<a’/A
922 E=mv’/2; v=0.42%x10° m/s; A = h/mv=1.73x10" m; Ay = sA/a = 3.46 mm.
923  Av/AA=v/A; OV =VvAA/A=1/At,;
c=VA, so v=c/A
Sv = (c/D)ALIA = cAAJA?:
At, = A% [cAA; Al =cAt, = (A [AA)
= (500 nm)*/(2.5%x 107 nm)
=1x10* nm =0.1m = A.
924 E=E¢” +E "’ +E ™ [ = <Ez> = <EE> , 80, as in section 9.1,
T T
I1=(3/2)E} +2E’ {3(cosd +cos(35/2) +cos(55/2))} (three terms ofEi -E,., 3
cross terms of E, - E; ). For each beam,

L=(2), =L

at 6 = 0, so that for all three together 1(6 =0) = %E}Z Note that (r, —r,) = asiné so that

0, =k(r,—r) =k(asin®); (r, —r,) =(5a/2)sin &
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so that &, = k(r, —r,) = k(3 asin@) where & = kasiné. So,
1(0) =1(0)/3+(21(0)/9)(cosd + cos(35/2) + cos(56/2))
When 6 = 0, the second term is zero.

_ (R+d)A
2R6

6= (R+d)A

2RAy

Ay

Using 4=6.000x10"m, R=1.000m, d=3.900m, Ay=2x10"m:

0= (1.000 m +3.900 m)(6.000 x 10" m)

— =0.000735 rad = 0.0421°
2(1.000 m)(2 x 10> m)

S=Z=R+d=1+d
d=1

_(R+d)A

~ 2R6

A 5.89x10"m

=== ———=0.00118 rad
Ay 5%x107m

A ray form S hits the biprism at an angle &, (w.r.t normal), is refracted at angle &,, and hits the second
face at angle (6, + ).
(4.4) (1) sin@, = (n)sin .. (n)sin(d, + &) = (1)sin(6/2 + ), where angle @ is defined in Figure 9.24.
As 8. —0,0 —0; «,0 are both “small.”
nsina =sin(@/2+ ), so nax =(0/2)+a, 8 =2(n—1)c. From the figure tan(8/2) = (a/2)/d, so

0/2=(a/2)/d, O=ald. ald =2(n-De, a=2dn-1c.
From Problem 9.19, a =2d(n—1); s=2d,so d=1m.

Ay =(s/a)A =sA/2d(n—-De; o =sA/2d(n—1)Ay

=[(2m)(5.00x 107 m)]/[2(1 m)(1.5-1)(5%10™* m)] = 0.002 rad.

Ay = sA,/2da(n—n').
Using 4=5.893x107 m, s=5.00m, a=1x10" m:

(5.00 m)(5.893 x 10”7 m)

> =0.295 mm
2(1x107 m)

2ay=224=2
a

Ay = (s/a)A, a=10"cm, a/2=5x10" cm.
O =k(r, —r,)+m Lloyd’s mirror,

0 =k((a/2)sina —[sin(90° - 2¥)] (a/2)sin ) + 7,
O =ka(l—cos2a)/2sina + 7,

maximum occurs for & =2z when sina(A/a) = (1—cos2a) = 2sin’ a.

First maximum ¢ =sin™" (1/2a).
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9.33 E, isreflected once. E,, =E; r,_,(see 4.47)
=E, (n-1)/(n+1)=FE _(1.52-1)/(1.52+1) =0.206EF .
E, is transmitted once, reflected once, then transmitted.
E,, = E, (t, (e o) = E, 1201+ ML= m)/(L+ m)][20/(n + D]

=dn(l-n)/(n+1)’ = E,[4(1.52)(1-1.52)]/(1+1.52)’ =-0.198E,,
(see 4.48) (— indicates 7z phase changed).

E,, is transmitted, reflected 3 times (internally), and then transmitted.

E, =E t(r'Y’t'=E [2/(1+m][1-n) / A+ n)[(2n)/(n+1)]
=[4n(1-n)’1/ (n+1)°’ = E [4(1.52)(1-1.52)1/ (1.52 +1)’

=-0.008E
for water in air.
E, =E, (1.333-1)/(1.333+1)=0.143E .
E, = Ew.[4(1.333)(1 -1.333)]/(1+1.333)’ =—0.140E,,.
E, =E,[4(1.333)(1-1.333)’]/(1.333+1)° =—0.003E,,.
9.34 Here 1.00 < 1.34 <2.00, hence from Eq. (9.36) with m =0,
d=(0+1/2)(633 nm)/2(1.34) =118 nm.

935 (9.36) dcosO, =(2m+ 1)(/1f )/4 for a maximum at (near) normal incidence, and

taking m = D (lowest value)

d=A4,/4=4,/4n=(5.00x 107 m)/4(1.36) =9.2x10°m.

A
936 dcosd =2 m(j’”] for minimum reflection = 2 m(4,/4 n)

2nd _[2(1.34)(550.0 nm)] _ (1474 nm)
m m m
for m=1,2,3,...; A4 =1474nm, 737 nm, 368.5 nm,...

at 0=0,4, =

9.37 In this case, one drops the relative phase shift of 7z from (9.34):

47n
5 =

L dcos6,

D

4zn »
27 =

dcos0,

0
A (4.60x107m) 25 nm =2.5x10"m
2n,d 2(1.333)(2.50 x 10* m)
6, = 46.356°
sin@, = (1.333) sin (46.356°) = 0.9646
6, =74.7°

cos =

9.38 Eq.(9.37) m=2n,d/4,=10,000. A minimum, therefore central dark region.

9.39 The fringes are generally a series of fine jagged bands, which are fixed with respect to the glass.

940 Ax=A,/2a, o= A /2n,Ax, o =5x107 rad = 10.2 seconds.
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941 (9.40) Ax= lf /2 for fringe separation where o = d/x.
Ax =A,/2(d/x) = xA,/2d. Number of fringes = (length)/(separation) = x/Ax so,

x/Ax =2d/A, =[2(7.618 x 10~ m)]/(5.00x 10”7 m) = 304.72 = 304 fringes.

A
942 d = (m +1j7f

-7
(172 +%j—(5‘893 X10°m) _ 508 4um

dl 72 2

943 x*=d,[(R —d)+R]1=2Rd, —d}. Similarly x* =2R,d, —d..
d=d —d,=(x*/2)(1/R ~1/R,), d=mA,[2. As R, >, x,
approaches Eq. (9.43).

9.44  (9.42) x, =[(m+1/2)A,R]", air film, n, =1, so 4, =A4,.
R=x2/(m+1/2)A, =(0.01 m)*/(20.5)(5% 107" m)=9.76 m.

9.45 X2 —x2 = A,R(m,, —m,_,)

m

2

m=1

I
ﬂ'fR(mm - mm—l )

Use
1
2dm = m+5 /10
-
m= 2
j'0
Since the offset is a constant Ad:
2 2
R — xm _‘xm—l

A 1 1
“IR|2d,+Ad-—~|2d,  +Ad-—
2 2

0

N |

B nf(xfﬂ —xi_l)
ZR(dm - dm—l)

Thus the radius of curvature can be measured independent of Ad.

946 x,=(mAR)"

'xm+l —Xm = (ﬂ’fR)l/z( Vi +1 _\/;)
xm+2_xm+l =(ﬂ’fR)1/2(Vm+2_\/m+l)
x, AR Wm+1-Vm)  fmri-vm

m+l m

'xm+2 _'xm+l - (ﬂ’fle)l/z(\/"n'i-2 _\/m+1) - \/m+2 _'\/m+1

X
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Expand the square roots for large m (keeping only the first few terms):

ot = "
_ 1/2 1 -1/2 1 =3/2
Nm+l=m'""+—m """ ——m
2 8

42 =m? +m 2 _lm—3/2
2

1 1
1/2 -1/2 -3/2 1/2
m?+—m——m? —m"

xm+l _‘xm — 2 8
Ksz T Xst g2 4 V2 _lm—sn ' _lm—l/z +lm—3/z
8
1 2 _lm—m 2 _lm—zxz l—lm"
_2 8 _ 4~ 4 _4m-1_ 1
lm—l/Z _ém—m 2 _éma/z l_gm—l 4m -3 2m
2 8 4 4
Form =150
V50+1—-+/50 —1.0099
50+2—-+/50+1
1+ =1.01
2(50)

9.47 A motion of A/2 causes a single fringe pair to shift past, hence
92(A4/2)=2.53x10"m and A =550 nm.
9.48 Ad=N(A,/2)=(1000)(5.00x10"" m)/2=2.50x10"* m.

949 Ad= N%

-4
N= 2Ad _ 2(1x107 m) — 400
A 5%107m
9.50 A=Ad= N()“o /2)’ A= (nairx - nvacuumx);

N =2A/A, =[2(1.00029 —1.00000)(0.10 m)]/(6.00 x 10~" m) = 97.

9.51 Differentiating v = i:

c
2
A%=%Av=iAv
v c
Av=i
At
Al =cAt
2 2
A,10=ii_i
c At AL
2D =Al,
12
A/lo__o
2D
2 -7 2
D= A :(6.43847><10 m) ~0.1594 m

204, 2(0.0013 nm)
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Fringe pattern comes from the interference of two beams, one that passes through the lower medium
(n1), and is reflected off its mirror, one that passes through the top medium (7,) and is reflected off its
mirror. The two beams reflect off the front surface of the other medium.

It might be used to compare 7, and n, (especially if one changes, such as due to pressure or
temperature), or compare the flatness of one surface, to a known optically flat surface.

E’=EE, =E (') /1-r’e)1-r’e”),
I =1ty [1-r’e™ —r’e” +1).
(a) R=0.8944, therefore F =4R/(1 —R)* =321.
(b) y =4sin™ (1/JF ) =0.223. (c) F=27/0.223. (d) C=1+F.
2/[1+ F(AS/4)*1=0.81[1+1/(1+ F(AS/2)*)],
F*(A8)* —15.5F(AS5)* -30=0.

I=1__cos’8/2, I=1I

max max

2. F=2xly=2.

/2 when & = 7z/2, therefore y = 7. Separation between maxima is

(4.47) r,_, = (n, —n,)/(n, +n,). Bare substrate: r = (n, —1)/(n, +1). Substrate with film: r'=17,_ rostieor
(4.48) t,_, =2n,/(n, +n,), so, r=[2/1+ n, N(n, —-n; ) (n, +n, )][an /(nf +1)], where n,=n. Note
that for n, > n,> 1, both 7 and ” are positive. But, with thickness ﬂ,f /4, a zrphase shift occurs due to the
OPD in the r” beam, s0 rp =¥ — 1"

Thus, the 7’ beam (partially) cancels the » beam.

At near normal incidence (6, = 0) the relative phase shift between an internally and externally reflected
beam is 7 rad. That means a total relative phase difference of (27?//7./,)[2(/1f [/D]+7 or 27. The waves

are in phase and interfere constructively.

n,=1, n.=n, n=n,.

V1.54 =124, d = A, /4 = A,/4n, = 540/4(1.24) nm =167 nm.
No relative phase shift between two waves.

The refracted wave will traverse the film twice, and there will be no relative phase shift on reflection.
Hence d = Ay/4ny= (550 nm)/4(1.38) = 99.6 nm.

A
dcos6 =(2m+ 1)( 4:] j Let 8 =0, m =0, (minimum thickness).

=7
= i = w =96nm
dn,  4(1.30)

Note that in the triangle including &and r, the length of the side from P, to a plane, parallel to the
surface, and containing point z(x) is r; cos € So, from zero elevation,

h=rycos @+ z(x) or z(x) =h — ry cos 6.
(9.108) can be demonstrated on the triangle (a, 1, r,), where a is the length of the boom:
r =1’ +a -2r acos(a+90°—t9) = sin(}/) = —Cos(90°+ }/)

and 0 =k(r, — 1) =Q2z/A)(r, —1,).



