4 CHAPTER 1. VECTOR ANALYSIS

Chapter 1

Vector Analysis

Problem 1.1

(a) From the diagram, |B + C|cos 3 = |B|cosf; + |C|cos 2. Multiply by |A].
|A||B + C|cosfs = |A||B|cosb; + |A||C]| cos 5.
So: A:(B+ C) =A-B+ A-C. (Dot product is distributive)

2| C| sin 2

Similarly: |B + C|sinfs = |B|sin#; + |C|sin 2. Mulitply by |A|f. AN
|A|B + C|sinf3 i = |A||B|sin0; i + |A||C]| sin 05 f. $ §}|B|si1191
If ©1 is the unit vector pointing out of the page, it follows that ——— A
AX(B+C)=(AXB)+ (AXC). (Cross product is distributive) [Blcosy |Gl cosfy

(b) For the general case, see G. E. Hay’s Vector and Tensor Analysis, Chapter 1, Section 7 (dot product) and

Section 8 (cross product)

Problem 1.2 C

The triple cross-product is not in general associative. For example,
suppose A = B and C is perpendicular to A, as in the diagram.

Then (BxC) points out-of-the-page, and A X (BxC) points down, : A=B
and has magnitude ABC. But (AXB) = 0, so (AXB)xC =0 # BxC
AX(BxC). TAx(BxC)
Problem 1.3 zh

A=+1%+1y-12,A=V3;B=1%+1y+1% B= 3.

B
A-B=—|—1+1—1=1=ABCOSHZ\/5\/§C089:>C089:%. A

=Y

6 = cos™! (3) ~ 70.5288°

A

Problem 1.4

The cross-product of any two vectors in the plane will give a vector perpendicular to the plane. For example,

we might pick the base (A) and the left side (B):
A=-1%4+29+0zB=-1%+0y+32z.
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CHAPTER 1. VECTOR ANALYSIS 5

AxXxB=|—

This has the rlght direction, but the wrong magnitude. To make a unit vector out of it, simply divide by its
length:

|AXB| =36 +9+4=". ﬁ:|§§;::5x+gy+§z.
Problem 1.5
b N 2
AX(BXC) = A, A, A,

(B,C. — B.Cy) (B.C, — B,C,) (B,Cy — B,C,)
X[Ay(B,Cy — ByCy) — A.(B.Cy — ByC2)] +3() + 2()
Il just check the x-component; the others go the same way)
%(A4,B,Cy — AyB,Cy — A.B,C, + A, B,C,) +5() + 2().
B(A-C) — C(A-B) = [By(A,C; + A,Cy + A,C,) — Cp(AyBy + AyBy + A, B3+ ()9 + () 2
=%(A4,B,Cy + A,B,C, — A,B,C, — A,B.C,) + §() + 2(). They agree.

=l

Problem 1.6
AX(BxC)+Bx(CxA)+Cx(AxB)=B(A-C)-C(A-B)+C(A-B)—A(C-B)+A(B-C)-B(C-A) =
So: AX(BxC) - (AxB)xC=-Bx(CxA)=A(B-C) - C(A-B).

If this is zero, then either A is parallel to C (including the case in which they point in opposite directions, or

one is zero), or else B-C = B-A = 0, in which case B is perpendicular to A and C (including the case B = 0.)

Conclusion: | AX(BXC) = (AXxB)XC <= cither A is parallel to C, or B is perpendicular to A and C. |

Problem 1.7
2 =(4%+6y+82)—(2%+8y+72)=(2%—-2y+ 2

2 = ITIT1=[3]

; 2 |25 25
2 =5-=|3Xx—3¥+

z

Wl

Problem 1.8
(a) AyB, + A, B, = (cos pA, + sin ¢ A, )(cos By + sin¢B,) + (—sin pA, + cos pA,)(—sin ¢ B, + cos ¢ B,)
= cos? pA,B, + singcos p(A,B, + A.B,) + sin® pA, B, + sin® A, B, — singcos p(A,B. + A.B,) +
2
cos® A, B,
= (cos? ¢ + sin® $) Ay By + (sin” ¢ + cos® p) A, B, = AyBy + A, B,. v

(b) (A2)* + (Ay)* + (A)* = B3 AA = B2, (B3, Ry A;) (S RinAk) = By (SiRijRar) Aj Ay

. ‘ lif j=k
This equals A2 + A2 + A2 provided | $3_ Ri; Rix = { 0if j 4k }
Moreover, if R is to preserve lengths for all vectors A, then this condition is not only sufficient but also
necessary For suppose A =(1,0,0). Then X, ; (£; Ri; Rir,) A; A, = ¥; Ri1 R;1, and this must equal 1 (since we
want A +A —I—A = 1) Likewise, X3 | RiaRi2 = %?_| Ri3R;3 = 1. To check the case j # k, choose A = (1,1,0).
Then we Want 2 =%, (3 RijRir) AjAr = ;R Ri1 + X, RioRio + 3 RinRip + £; RioR;1. But we already
know that the first two sums are both 1; the third and fourth are equal S0 Y, Rlezz =3, RisR;1 =0, and so
on for other unequal combinations of j, k. v Tn matrix notation: RR = 1, where R is the transpose of R.
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6 CHAPTER 1. VECTOR ANALYSIS

Problem 1.9

Looking down the axis:

z

A 120° rotation carries the z axis into the y (= Z) axis, y into z (= 7), and z into z (= ). So A, = A,

Ay=A,, A.=A,.
001

R=]100
010

Problem 1.10

! CARE S N
(b) in the sense (4, = —A4,, A4, = -A,, A, = —A,)

(c) (AXB) — (—A)Xx(—B) = (AxB). That is, if C = AXB, . No minus sign, in contrast to
behavior of an “ordinary” vector, as given by (b). If A and B are pseudovectors, then (AxB) — (A)x(B) =
(AXxB). So the cross-product of two pseudovectors is again a pseudovector. In the cross-product of a vector
and a pseudovector, one changes sign, the other doesn’t, and therefore the cross-product is itself a wvector.
Angular momentum (L = rXxp) and torque (N = rXF) are pseudovectors.

(d) A:(BXC) — (—A)-((-B)x(-C)) = —A:(BXC). So, ifa = A-(BxC), then a pseudoscalar

changes sign under inversion of coordinates.
Problem 1.11

(a)Vf=2z%+3y2y +423%

OV f =2zy324 % + 302y y + 42%y%23 2

(o)Vf=e"sinylnzx+e®cosylnzy + e*siny(1/z) z

Problem 1.12

(a) VA =10[(2y — 6z — 18) X + (22 — 8y + 28) §]. VA = 0 at summit, so
2y —6x —18=10 ] ) .
2$—8y+28:0:>61:—243/4—84:0}2y—18_24y+84_0'
22y =66 =y =3=—20 24+28=0=— 1= 2.

Top is | 3 miles north, 2 miles west, of South Hadley. |

(b) Putting in x = —2, y = 3:
ho=10(—12 — 12 — 36 + 36 + 84 + 12) = [ 720 ft.
(c) Puttinginz=1,y=1: VA =10[(2—-6 —18) X+ (2 —8+28) ] =10(—22% +22y) = 220(— % + §).

|V h| —220\/_~ 311 ft/mlle direction:
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CHAPTER 1. VECTOR ANALYSIS 7

Problem 1.13
— @)X+ (y—y)F+ =Nz 2 =TT g+ (=)

(a) V(2 2)—(9@[(1 22+ (y—y)2+(z—2)? % —I—a%()f’-l-%()i:2(.7:—.13’)i+2(g;—g;’)§r+2(z—z’)i:24.
(0) V() = Zllw =2 P+ =y + (=P 2%+ 50 29+ 20 12

)
x-307 220y —v) ¥ - 307520z - 2)2
)X+ (y—y)y+(z -2

() 2(r ™) =n2 18 —narl(dlor ) =n2 "4 50| V(2 ") =na " 4

Problem 1.14
7 = +y cos ¢ + z sin ¢; multiply by sin ¢: gsin ¢ = +y sinp cos¢p + z sin ¢

Z = —y sin @ + z cos ¢; multiply by cos ¢: Zcosd = —y sin ¢ cos ¢ + z cos? ¢.
Add: ysing +Zcos¢ = z(sin2 ¢ + cos? ¢) = z. Likewise, Jcos¢ — Zsin ¢ = y.

So gﬂ = Cos ¢; 27 = —sin¢; 2 7 = sing; g—; = cos ¢. Therefore
v :8f:8f8y of 8z _ v :
( f>y oyay +ozoy — OO oV )y +sing(V /). So V f transforms as a vector.  qed

(V). = gﬁ =L 38— sing(V )y +cos (V).
Problem 1.15
(a) Vv, = 8%(&62) +

8%(33322) + %(—23:2) =2x+0—-2z=0.

(b)V-vp = %(my) + a%(Qyz) + %(Bmz) =y +2z+ 3z.

(OVve = Z(y°) + 552wy + 2°) + £ (2y2) = 0+ (22) + (2y) = 2(« + y)

Problem 1.16

_3
AN { 2 V‘V:%(%)‘F%(%)‘F%(%):%[,(1’2—1-1/24—22) 2}
\ + 2 ly(z? +y> + 2)-3 +%[(az + 9?2 +z)—%]
< ———— 0o —» —>

Y-tz 5
= ()72 +a(=3/2)() 220+ ()72 +y(=3/2)) 32y + ()72
N +2(=3/2)()732: = 3r % = 3r 5 (2 + 42 +22) =32 —3r 3 = 0.

This conclusion is surprising, because, from the diagram, this vector field is obviously diverging away from the
origin. How, then, can V-v = 07 The answer is that V.v = 0 everywhere except at the origin, but at the
origin our calculation is no good, since r = 0, and the expression for v blows up. In fact, V-v is infinite at
that one point, and zero elsewhere, as we shall see in Sect. 1.5.

Problem 1.17

Vy = COSPVy + 8NP v,; U, = —sing vy + cospv,.

Bvu_% vy g (Ovy 8 vy 9z dv: Qy | Bv: 9z : )
oy = cos ¢ + G ¥ sin¢ = (ay o5 T or o0 cos ¢ + e oy T o o0 sin ¢. Use result in Prob. 1.14:

= (% cosqﬁ—i— av"’ Siﬂgb) cos ¢ + (% cos ¢ + 5 @& smqb) sin ¢.

Z

du. _ vy — Ouy dy | Ovy 9z : du, Oy 8_1)“&
A _(8y82+ o= ) sing+ | Gr 52 + 5752 ) coso

= —( %y qmqﬁ—l— c0q¢) %mg{)—i—( @a sin ¢ + % cos¢) cos ¢. So
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8 CHAPTER 1. VECTOR ANALYSIS

Ju. 8Uz _ Ov vz . ) du, 2, du, .

a7 T =5 cos? ¢ + —; sin ¢ cos ¢ + % t;méﬁcoagb—l— s sin® ¢ + G2 sin® ¢ — 2 sineos ¢
—%vyz Slnqﬁcosgb —I— ‘)—’”4 cos? ¢

= %y (cos® ¢ + sin? ¢) + 8@z (51112¢ +cos? ¢) = 3% + auZ v

Problem 1.18

5§ oz
(a) Vxv, = |2 % 2 :)”((0—6:62)+y(0+2z)+2(322—0):|—6a:z§<+2257+3222.|
2% 322% 21z
X v %
(b) Vxvi=|% & £ |=%0-2)+§5(0-32)+20—2)=|-2y%—329 —z2|
Ty 2yz 3z
% y %
(€) Vxve=|4& & & |=%(2z-22)+5(0-0)+22y—2y) =[0.]
v? (2zy + 2%) 2z

As we go from point A to point B (9 o’clock to 10 o’clock), x
increases, y increases, v, increases, and v, decreases, so dv, /Oy >
0, while dv, /0y < 0. On the circle, v, = 0, and there is no
dependence on z, so Eq. 1.41 says
v4 /B v

Gvy (9%)

A X
g points in the | negative z directi0n| (into the page), as the right

hand rule would suggest. (Pick any other nearby points on the
v circle and you will come to the same conclusion.) [I'm sorry, but I
cannot remember who suggested this cute illustration.]

A

Problem 1.20
v=yk+tary,orv=yzX+azy+ayi orv= 3122 —-22)X+ 39+ (2% - 322?) %;
or v = (sinz)(coshy) X — (cosz)(sinh y) §; ete.
Problem 1.21
(i) V(fg) O(fg) %+ O(fg) y+ a(fg) (fg% +g%£> (f +98y) (f +gaz)
=f(ax>“<+ %y 4 22 ) to(Lx+ 89+ 85) = f(Vo) +9(Vf).  qed

(iv) V-(AXB) = £ (4,B. AB)+8y(AB — A,B.) + (AB—AB)

9B 9B, OA. c’)BJL _ A,
Ay ox +BZ 890 AZ 89: By ox +AZ oy +B’« By Al By BZ oy

+A, 2 —I—By%ﬁ—Aya—Bf ~ B, %
9A. O0A, 0A, 0A, 9B, 9B,
:Br(W J >+By(az )+B( ay)_Ax(ay_az)
9B, .\
— Ay (28 — 9B:) —Az(m ~ 28.) —B-(VxA) - A-(VxB). qed

. O(fA.)  B(fA)) & O(fA.)  O(fA.))Y = A(fA,)  O(fA)\ A
(V)VX(jA):(%_%ﬁJF( (fAe) _ <g;x>>y+( (A _ 4 >>Z

(©2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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9
= (£ + A9 - 20 Ay5§>x+(faA*+Axaz % 4.2y
+(r5m + A8 - 1% — 4,2
(e s ()

9 9 9 o ~ o o) N

~ (4,2 - Aza—gj) %+ (Aza—g - Awg)_};) y+ (A9 - Ay—ﬁ) z]
=f(VXA)—AXx (Vf). qed

Problem 1.22

(a) (A-V)B (Azaa% Aya£1 A, 2L > (Ama;jf A.9Bs L » 3&) v

(A 0 + 4,50 + A8 )
(b)f‘:%—w

= oty Let’s just do the  component.

@V, = = (0 + v +28) i
:i{ [7+x( )\/»)52:0]—%1/1’[ 2(\/»)421/]—1-23:[ %ﬁ?z]}
_lfa

HE- @t ta?)) 1 E- & @142} - HE-9) -0

T T T
Same goes for the other components. Hence: | (V)T =0|.

(¢) (Va-V)vp = (9: = +3xz2 %

2%7:8 ) (zyX +2yzy + 3x22)

=x (yx—l—Oy—i—Bzz) + 3222 (x X +229+02) — 202 (0% +2y§ + 31 2)
= (;L‘Qy + 3'£222) X+ (6:1:23 — 4:L'yz) v+ (3:IJ2Z — 6:L‘2Z) Z

= |z? (y—|—3z )x—l—?asz(?)z —2y)
Problem 1.23

—32%2%

. v 9B, B
(i) [V(AB)], = 2 (A,B, + AyB, + A,B,) = 24=p, 1+ A 0B | Sup A OBy L 0Ap 4 4 0

Zdw
[AX(VxB)], —Ay(ZAXB) — A, (VxB), = 4, (ax 351)_142(38%—%%)
[BX(VXA)], = By(%* — %) — B:-(%= — %)
[( ) ] :( Iax+Ayay+Azaz) Amaﬁ%-—i_Ayaa%-—’_Az 62
(B-V)A], = B, %= + B, %= + B,

z Bz
So [AX(VXB)  BX(VXA) + (A-V)B + (B-V)A],
_Ayaan AaB Aan—l—A 8Bz+B

8A OA,.
9B %B ’ ac%B . B%A v B%A B aA B oz " BZ Bw
Am 8; Ay 8;1/1 Az 8; Bx 6; B ; +B

ZBz

- B AT O o ) B~ )
+2§Z—$T&a+%&8x+@ {;4—%—'}4—% o

= [V(A-B)], (same for y and z)

(vi) [Vx(AXB)], = (A><B) 2 (AXB), = £-(A,B, A B,)— £(A.B, — A,B.)
2uBy, + At — 2B, — A% — %, AzdaBr + 2B 4 A, 28
(B-V)A — (A-V)B +A(V-B) - B(V-A)],
=B, % + B, % g 0 A, 08: A O8: A 0By A (%8s OBy 0By p (24 4 Oy 04

oy
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10 CHAPTER 1. VECTOR ANALYSIS

7B6A7+Ax( %+§»+8y"+%)+Bz(%§f%ﬁ§ ~G -
Ay(=57) + A (= F2) + Ba (¢

)
[VX(AXB)] (same for y and 2)
Problem 1.24

V(fl9) = &[l9x+5([/9)3+ Z([/9)2

T

:93§23§§{+ df f33y+g%fg—§2
=9 f (x+ 5Ly +5a) - r (2% + 529+ §22)| = 5l gea
V(A/9) = £ (Az/9) + £ (Ay/9) + F(A./9)
oAy _ 5 g aAy —A, % DA —Azg—,"

— 9= zlal_l_ 9y J8y+gaz

g
:%[ (8A1+ ayy+ ) (Am +Ayl+Azaz)]:W~ qed

[(VX(A/g)], = £ (A:/9) — 52(Ay/9)

| g%ha_4 0 N g2y _ 4, 2
- 92 2
1 9A. 94, 99
= el |:g( dy Oz ) (Az(h Ay;g):l
— (VXA ;(Axvg)” (same for y and z). qed
Problem 1.25
Xy Z
(a) AXxB= |z 2y 32| =%(672) +3(92y) + 2(—22° — 6y?)
3y —2x 0

V-(AXB) = £ (6x2) + £ (9zy) + £ (—227 — 6y*) = 62 + 92 + 0 = 152

VXA =%(4(32) - %(23})) +9 (£ (@) - £(32) +2 (3%(2@/) - a%(z)) =0; B{(VxA)=0
B =% (3%(0) — 2(-22)) +3 (£6y) — 2(0)) +2 (& (—22) - £(3y)) = —52 A«(VxB) =152
V-(AXB) £ B-(VXA) ~ A-(VxB) =0 — (~152) = 152. v/

(b) A-B =3zy — dzy = —zy ; V(A-B) = V(—zy) = RZ(~ay) + §5.(—2y) = ~yX — 2§

T Oy
%y 2
AX(VXB)= |z 2y 3z | =%(—10y) + y(5z); BX(VXA) =0
00 -5
(A-V)B = (v + 2y + 324 ) (3y% — 209) = X(6y) + ¥(~20)
(B-V)A = (3y2 — 204 ) (2% + 2y +322) = X(3y) + §(~42)

AX(VxB)+Bx(VxA)+(A-V)B+ (B-V)A
=—-10yx+5zy+6yx—2zy+3yx—4doey=-yx—zy=V-(A-B). v
(c) VX(AXB) =% ( (227 — 6y%) — £~ (92y)) +3y ( (6z2) — 8%(—2x2 — 6y?)) + 2 ((%(92’34) - 8%(6:52))
X(—12y — 9y) +y(6x +4x) + 2(0) = —21lyx + 102y
VA= Z(x)+ 42y +2(B32) =1+2+3=6 V-B=2Z(3y)+ 2 (—2x) =0
(©2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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11

(B-V)A - (A-VI B+ A(V-B)—B(V:A)=3yx—4day —6yx+2zy — 18yx+ 120§ = —21lyx+ 10z §
=VX(AXB). v

Problem 1.26

2 2 P
() G =% Gl = G2 =0 > V21, = 2]
(b) %;ZT«” = —;%yT” = % =-T, = | V2T, = 3T, = —3 Sinmsinysinz.|

vy _ o . v, _ v, _ —
(d) 32—;2 22, 8; = %;2 =0 = V&, =2

%;5 —%2;21’ ;0% — 62 = V2, =6z |V2V:2)‘<+6x§f.|

O =9 = %% =0 = V2., =0

Problem 1.27

VA(Vxv) = £ (%

_ (821) _

— \ Oz oy
From Prob. 1.18:
Problem 1.28

Bzy vy, _ Ov. o B'Uy
- ) +5 (B -+ % (Bz
82

_ O,
dy
v + v, _ 9%v, 9 Vy 32’01,
Oy Ox Oy 0z 0z dy 9z 0x

3 82) = 0, by equality of cross-derivatives.
VXV, = —622%+22 943222 = V(Vxv,) = Z(— 61’2)—!-3 (22)+£(32%) =

—6z+6z = 0.

Xy &
|2 8 0| _ s 9% 9%t 5( 0%t 9% 5 (0%t 9’
VX(Vt) - %ﬂtﬁ ?}% g% - X(Bsz B azay) +y(628w B Bzaz) +z(313y B 8y690)
dxr Oy 0z

= 0, by equality of cross-derivatives.

In Prob. 1.11(b), Vf = 2z¢°2* & + 322y?21 § + 42?423 2, so
b'e y Z
12} Rl 9
VX(Vi) = & y o
a3zt 3aly?2t 4ayP 23
=%(3-42%y?2® — 4. 32%y22%) + §(4 - 229323 — 2 day®23) + 2(2 - 3xy?2t — 3 229%2%) = 0. v

Problem 1.29
(a) (0,0,0) — (1,0,0). LL’ZOH17y:Z:O;dl:d:L’)’\(;V'dl:IQd:L';fV~dl:
(1,0,0) — (1,1,0). 2 =1,y : 0 = 1,2 = 0;dl =
(1,1,0) — (I, ,1). 2=y =1,2: 0 — 1;dl =

Total: fv-d1=(1/3)+0+1=

(b) (0,0,0) — (0,0,1). z =y =0,2:0— 1;dl =dzz;v-dl =
(0,0,1) — (0,1,1). 2 =0,y : 0 - 1,z = 1;dl =
(0,1,1) — (1,1,1). 2: 0= 1L,y =2=1;dl =
Total: [v-dl=0+1+(1/3)=]|4/3.

[y a2 de = (3/3)|5 = 1/3.
dyy;v-dl=2yzdy=0; [v-dl=0.

dzi;v~dl:yzdzzdz;fv~dl:f01dz=z|(1):1.

y?dz=0; [v-dl=0
dyy;v-dl=2yzdy =2ydy; [v-dl =
dex;v-dl=zde; [v-dl =

1
Jo 2udy =y*h = 1.
fol 2?dr = (23/3)|§ = 1/3.

()z=y=2z: O—>1das—dy—dzv dl = 22 dx + 2yzdy + y? dz = 2% dx + 222 do + 22 do = 42% du;
[v-dl= fo 4z dx = (42 /3)|} =|4/3.

(4/3) — (4/3) =

d) fv-dl=

(©2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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Problem 1.30
y:0 — 1,z = 0:da = dedyz;v-da = y(z* — 3)dady = —3ydzdy; [v-da = —3f02dxf02ydy =
—3(x|§)(%2|3) = —3(2)(2) In Ex. 1.7 we got 20, for the same boundary line (the square in the

ay-plane), so the answer is the surface integral does not depend only on the boundary line. The total flux

for the cube is 20 + 12 =

Problem 1.31

[Tdr=[ 22 dx dy dz. You can do the integrals in any order—here it is simplest to save z for last:

fo[f (ol

The sloping surface is z+y+z = 1, so the x integral is fo(l_y_z) dxr = 1—y—z. For a given z, y ranges from 0 to
1 -2, 50 the y integral is [~ (1—y —2) dy = [(1 —2)y = (W /2)lg (1=2) = (1=2)=[(1-2)*/9 = (1-2)*/2 =

4

(1/2) — z + (22/2). Finally, the z integral is fo G-z+% dz-fo ——z + 2 )d z(%—%—&—%)ﬁ):

f-itih=

Problem 1.32
T(b)=1+4+2=T; T(a)=0. = |T(b)—T(a) =T.|

VT = 2z + 4y)%x + (4o + 223)9 + (6y22)2; VT-dl = (2x + 4y)dz + (4x + 223)dy + (6yz2)d=

(a) Segment 1: 2:0 — 1, y = 2 = dy = dz = 0. [VT-dl = [,(2x) dz—m2]0—1
Segment 2: y: 0 — 1, x =1, 2=0, de =dz=0. [VT-dl = fo y—4y|0—4. f:VT~dl:7.\/

Segment 3: z:0 -1, c=y=1, de =dy =0. [VT-dl = fo (62%) d2_2Z3’0_2'

N

(b) Segment 1: z:0—1, s =y=dz=dy =0. [VT-dl = fo 0)dz = 0.
Segment 2: y: 0 — 1, £ =0, z=1, de =dz =0. [VT-dl = fo )dy = 2y|; = 2. fbVle—7\/
Segment 3: 2:0—1, y=2=1, dy=dz=0. [VT-dl = fo (22 4+ 4) dx a -

= (22 + 4x) ‘321—&-4:5.

(c)x:0—1, y=m, z=21° dy=dx, dz="2xdz.

VT-dl = (22 + 4x)dz + (4z + 22%)dx + (622*)22 dx = (102 + 142°)da.

[PVTdl = [ (102 + 1428)de = (52% +227T)|, =5+ 2="T7. v
Problem 1.33

Vewv=y+22+3z

J(V-v)dr = [(y+ 22+ 3z)dzdydz = ff{foz(y + 22 + 3z) daz} dydz

— [(y+2z)z + %:cﬂi =2(y+22)+6

= f{f02(2y+4z+6)dy}dz
— [y2+(4z+6)y]§:4+2(42+6):82+16

2 9 2
= [(82 +16)dz = (422 + 162)|, = 16 + 32 =[48.]
Numbering the surfaces as in Fig. 1.29:
(©2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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CHAPTER 1. VECTOR ANALYSIS 13

(i) da = dydz%,z = 2. v-da = 2ydydz. [v-da= [[2ydydz = 2y2|§ = 8.
(ii) da = —dydz %X,z = 0. v-da = 0. [v-da = 0.

(iii) da = dxdz 9,y = 2. v-da = 4zdx dz. [v-da = [[4zdzdz = 16.

(iv) da = —dzdz§,y = 0. v-da = 0. [v-da = 0.

(v) da=daxdyz,z=2. v-da = 6xdxdy. [v-da=24.

(vi) da = —dxdyz,z=0. v-da=0. [v-da=0.

= [veda =8+ 16+ 24 =48

Problem 1.34

Vxv=%0-2y) +y(0—-32)+2(0—-2) = 2yX - 32y — 22
da = dy dz X, if we agree that the path integral shall run counterclockwise. So
(VXv)-da=—2ydydz.

[(Vxv)-da = f{ 02_2(—2y)dy} dz 4
22 = (2 2)?

— _f02(4—4z+22)dz:— (42—2,22—!—%)‘2 2
=—(8-8+3) =|-

wloo

Meanwhile, v-dl = (zy)da + (2yz)dy + (3zx)dz. There are three segments.

z
2)
<3>\ N
Y

Nax=2=0;dr=dz=0.y:0—2. [vdl=0.
(2)z=0; 2=2—y; de =0, dz = —dy, y:2— 0. v-dl = 2yz dy.
2
Jvedl =[5 2y(2 — y)dy = — [} (dy — 29%)dy = — (2% — 2%) g = — (8 —
(B)z=y=0;dr=dy=0; 2:2—0.v-dl=0. [v-dl=0. So §vedl = —3.

N wi

Problem 1.35
By Corollary 1, [(VXv)-da should equal 3. VXv = (42% — 2z)% + 22 2.

(i) da=dydz%, x=1; y,2:0 — 1. (Vxv)da= (42> — 2)dydz; [(VxvV)-da= f01(4z2 —2)dz
= (32 -2)l,=§-2=-}

(ii) da = —dzdyz, z=0; z,y:0— 1. (VXv)-da=0; [(VxXv)-da=0.

(iii) da=dxdzy, y=1; z,2:0— 1. (Vxv)-da=0; [(VXv)-da=0.

(iv) da = —dzdzy, y=10; z,2:0— 1. (VXv)-da=0; [(VXv)-da=0.

(v)da=dxdyz, 2=1; z,y:0— 1. (Vxv)-da=2dzdy; [(VXv)-da=2.

= [(Vxv)da=-24+2=13 v

(©2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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14 CHAPTER 1. VECTOR ANALYSIS

Problem 1.36

(a) Use the product rule VX (fA) = f(VXA)—-Ax (Vf):

/Sf(VxA)~da=/SVx(fA)-daH—/S[Ax(Vf)]-da:j{)fA-dl+/$[A><(Vf)]-da. qed

(I used Stokes’ theorem in the last step.)

(b) Use the product rule V-(A xB) =B - (VxA)—-A-(VxB):

/VB.(VxA)dT:/VV.(AxB)dm/VA.(VxB)dT:%S(AxB>.da+/vA.(V><B)dr. ded

(T used the divergence theorem in the last step.)

Problem 1.37 |7 = /22 + y2 + 22; 6 =cos™! <\/ﬁ) ; p=tan™' (¥).

Problem 1.38

There are many ways to do this one—probably the most illuminating way is to work it out by trigonometry
from Fig. 1.36. The most systematic approach is to study the expression:

r=xX+yy+zz=rsinfcos¢pX+rsinfsingy + rcosf z.

If T only vary r slightly, then dr = %(r)dr is a short vector pointing in the direction of increase in r. To make
it a unit vector, I must divide by its length. Thus:

or or %
T OTTE T
or 00 op
%:sin@cosqbiJrSin@singby+cos€i; |%‘2:Sin29C082d)+Sin2981n2¢)+00820:1.
%:rcos@cosqﬁi—i—rcos@sind)y—rsin@i; %2:r2005290082¢+r20032651n2¢+7‘2sin20:7‘2.
g—; = —rsinfsingX + rsinfcospy; |g—c‘;5 > — 12sin? 0 sin® ¢ + r2sin® 0 cos? ¢ = r2 sin? 0.

F=sinfcos¢X +sinfsingy + cosbz.
= |0 = cosfcospX +cosfsingy —sinb z.
¢=—singpX+cospy.

Check: & = sin? §(cos? ¢ + sin® ¢) + cos? 6 = sin®f + cos?’ =1, v
0-¢ = —cosfsingpcoso + cossingpcosp =0, v etc.

sinff = sin? @ cos % + sin? Osin ¢y + sin 0 cos 0 2.
cosf 0 = cos?fcospX + cos?fsingy — sinf cos b 2.

Add these: R
(1) sinft +cosfO = +cospX +singy;
(2) ¢ =—sinpx +cosdy.

Multiply (1) by cos ¢, (2) by sin ¢, and subtract:

X = sin@cosd)f‘—l—cochosd)é —sinduﬁ.

(©2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
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CHAPTER 1. VECTOR ANALYSIS 15

Multiply (1) by sin¢, (2) by cos ¢, and add:

A :sinesind)f'+cosesin¢é+cos¢cf>.

cosff = sinfcosflcospX +sinfcosfsingy + cos? 0 2.
sin@ 0 = sin 6 cos 0 cos ¢ X + sin 0 cos Osin ¢ § — sin” 0 .
Subtract these:

|2 = c030f7s11190.|

Problem 1.39

(a) Vevy = 787,( r?) = T% = 4r
J(Vvi)dr = [(4r)(r sin @ dr dB dg) = (4) [ r3dr [T sin0do [27dg = (4) (%) (2)(2r) =|arR!]
[vi-da= [(r’f)-(r?sinfdfdot) = r* fo sin@df 77 d¢ = 47R* v (Note: at surface of sphere 7 = R.)

(b) Vovo = L2 (1r24) =0 = | [(V-va)dr =0
[vorda = [(L%) (r2sinfdddo#) = [sin6d dp =

They don’t agree! The point is that this divergence is zero except at the origin, where it blows up, so our
calculation of [(V-vq) is incorrect. The right answer is 4.

Problem 1.40

1 9 2]
Vv = ?8—(72 rcosf) + —— -5 (sinfrsin6) + rsm98¢(7 sin 0 cos ¢)
= 5 3r?cosf + 5 r2sinfcos + ——rsinf(—sin )

= 3cosf +2cosf —singp = 5cosh —sin ¢

(V-v)dr = [(5cosf —sin @) r2sin9dr df dp = Rz g (3] 5cosf — sin ¢) do| dfsinf
0 o |Jo
—>2m(5 cos 0)
—(%) (107T)f sin # cos 6 d6

c_>sin29 z
2 o

1
2

_ | 5% p3
—| 5z R3.

Two surfaces—one the hemisphere: da = R?sinfdfdét; r=R; ¢:0— 27, 6:0 — 5

Jv-da= [(rcos§)R*sin6dfdp = R® [ sinfcosOdb [ dp = R® (1) (2r) = wR3.
other the flat bottom: da = (dr)(r sin 0 d¢)(+0) = r dr dp 0 (here § = 5).r:0—=R, ¢:0—2m.
S R 271'
[veda = [(rsin®)(rdrdg) = [ r*dr [, dp =2mL
Total: [v-da=nR®+ 2nR% = 3nR3. v

Problem 1.41 |Vt = (cos § + sin 6 cos )¢ + (— sin 6 + cos 0 cos ¢)0 +

V2t =

4

(V)

L2 (r2(cosf +sinfcos d)) + —5 2 (sinO(—sind + cos f cos ¢)) + —— 8q5( sin @)
% 2r(cos 6 + sin f cos @) + ——(—2sin 6 cos § + cos? 9cos¢>—sm 0 cos ¢) — —— cos ¢
Tbmo[2s1n9cosﬁ+2sm 6 cos ¢ — 2sin @ cos § + cos? O cos ¢ — sin? @ cos ¢ — cos ¢
—— [(sin® 0 + cos? ) cos ¢ — cos ¢| = 0.

rsin O

<

(©2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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16 CHAPTER 1. VECTOR ANALYSIS

= V2 =0

Check: rcosf = z, rsinfcos¢ = x = in Cartesian coordinates ¢t = x + z. Obviously Laplacian is zero.
Gradient Theorem: fab Vit-dl = t(b) — t(a)
Segment 1: 0 = 5, ¢ =0, r:0 — 2. dl = drt; Vt-dl = (cos@ +sinf cos¢)dr = (0 + 1)dr = dr.
[Vtdl = [ dr=2.
Segment 2: 0 =5, r=2,¢:0— 3. dl= rsindde ¢ =2d¢ ¢.
Vi-dl = (—sing)(2dg) = —2sin¢dp. [Vi-dl= — [F 2sinpdd = 2cos d|§ = —2.
Segment 3: 1 =2, ¢=75; 0: 5 —0.

2
dl=rdf0 =2d60; Vi-dl = (—81n9—|—c059cos¢)(2d9) —2sin6df.

JVit-dl = —f 2sinfdf = QCOSH| =2.
Total: f; Vitdl=2-2+2= . Meanwhlle, t(b) —t(a) =[2(1+0)]—[0( )] =2. vV

Problem 1.42 From Fig. 1.42,|§ = cos¢pX +sin¢y; qAb = —singX+cosopy; Z2=12

Multiply first by cos ¢, be(,ond by sin ¢, and bubtract
Scos¢p — d)smqﬁ =cos2pX +cospsingy +sin’ ok —sindcospy = x(sm ¢+ cos® ¢) = k.

So|x = cosqbs—smgéqS.

Multiply first by sin ¢, second by cos q[), and add:

Ssin ¢ 4+ qz')cosqb —singcospX +sin? ¢y —sindcosdX + cos? py = y(sm ¢+ cos? @) =
So|§ = sing8 + cos ¢ . zZ = 7.

Problem 1.43

(a) Vv = 1(‘?9 (ss(2+ sin? ¢)) + %dﬁ(s sin ¢ cos @) + 2(3,2)

123(2—|—s1n2¢) (cos qb sin? ¢) + 3
4 + 2sin? ¢ 4 cos? ¢ sin? ¢ + 3

= 4+ sin’ ¢ + cos? ¢+3—-

(b) [(V-v)dr = [(8)sdsdpdz =8 [* sds [F do [} dz = 8(2) (T) (5) = [40m.
Meanwhile, the surface integral has five parts:
top: z =5, da=sdsd¢2; v-da=3zsdsdp =15sdsdp. [v-da=15 foz sds [ d¢ = 15m.
bottom: z =0, da = —sdsdpz; v-da=—3zsdsdp =0. [v-da=0.
back: ¢ = 7, da = dsdzq{b; v-da = ssingcospdsdz =0. [v-da=0
left: ¢ =0, da=—dsdz¢; v-da= —ssingcos¢pdsdz=0. [v-da=0.
front: s =2, da = sdpdz8; v-da=s(2+sin’¢)sdpdz = 4(2 + sin® ¢)d¢ dz.
[veda=4[F(2+sin?p)dg [; dz = (4)(r + T)(5) = 25.

So §v-da = 157 + 257 = 40m. v/
() Vxv = (%%(32) (ss1n¢cosq5)) + (& 9 (s(2 +sin® ¢)) — %(32)) ¢
+

1%}
: (as s?sin ¢ cos ¢) — ( (2 + sin 45)))
ssmqbcosqb—s?smd)cosgb)z—

l
s
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Problem 1.44

(a) 3(3%) —2(3) —1=27-6—1=20.]
(b) cosm =

©

(d) In(-2+3)=Inl=

Problem 1.45
(a) J2,(22 +3)18(x) de = 1(0+ 3) =
(b) By Eq. 1.94, 6(1 —2) =d(x —1),s0 1 + 3 + 2 :

f 9221 6(x + ) de =9 (— %) %:

|1 (ifa>1b),0 (ifa<b).|

Problem 1.46

a) [7, f(@) [eg;6(2)] dz = @ f(2)d(2)| = — [ ocda: (x f(2))0(x) dx
The first term is zero, since §(z) = 0 at oo; - (z f(z)) = Ei f = J: f
So the integral is — [ (m% + f) §(x)dr =0— f(0) = —f(0) = —f f
So, m%é(m) = —§(z). qed

b) [% f@)Ldr = f(2)0(x)|* — [, Lo(x)dz = f(o0) — [ Ldw = f(o0) — (f(c0) — £(0))
= [ f(x)6(z)dx. So % = §(z). qed

Problem 1.47
(a) |p(r) =q03(r —1'). | Check: [p(r)dr =¢q f53(r CrYdr=q. v

b) | p(r) = go%(r — a) — g8*(r). |
(c) Evidently p(r) = Aé(r — R). To determine the constant A, we require
Q= [pdr = [AS(r — R)dnr?dr = A4rR?%.  So A= ;% |p(r) = 1 2%:0(r — R).

Problem 1.48

(a) a® +a-a +a? :

(b) f(r —b)2L83(r) dr = 0% = L (42 4+ 32) =

(c) 2 =25+9+4 =38 > 36 =62, so c is outside V, so the integral is

(d) (e— (28 +29+22) > =(1&+09+ (-1)2)° =1+1=2< (1.5)2 = 2.25, so e is inside V,
and hence the integral is e-(d —e) = (3,2,1)-(-2,0,2) = -6+ 0+ 2 =

Problem 1.49
First method: use Eq. 1.99 to write J = [ " (478%(r)) dr = dme™0 =
Second method: integrating by parts (use Eq. 1.59).

(©2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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18 CHAPTER 1. VECTOR ANALYSIS

P -r —rf —r 9 —r\a —ra
Jz—/ﬁ~V(e )dT—I—j{e T—z-da. But V(e )=<Ee )rz—e r.
S

1%

1 . r .
/T—26_747T7“2d7“+/6_r7% -rzsianHdgbf‘:éLﬂ/e_’ dr—l—e_R/sinGdeq’)
0
=47 (—e_

')’f’ +4re = 4rn (—e_R + 6_0) +dme B = dn.v (Here R=o00, soe ¥ = 0.)

Problem 1.50 (a) V-F1 = 2 (0) + £(0) + £ (22) =[0} V-Fy =22+ 24+ % —14+1+1=[3]

X ¥V z P Xy z
_ 18 8 a|_ 4 2\ _ o o 8 8| _
VXFi= |3 gy 45 | =9 5o (%) =[-209 VxFa= |5 4 5| =[0]
0 0 z? T Yy =z

F, is a gradient; Fy is a curl| Uy =5 (2* +y? +2?)| would do (Fz = VUy).
3

For A4, we want (ai %&) = (% — %) =0; 38’1“ 854; =22 Ay=%, A, = A, =0 would do it.
A= %;1: y| (F1=VXA;). (But these are not unique.)
2 v 7
(b) V-F3 = 2 (y2) + 2 5 (T2) + 2(ry) =0; VxFz= |4 a% Zl=t@z-2)+9Wy-y) +2(z—2) =0.
yz xz xY

So F3 can be written as the gradient of a scalar (Fg = VUs) and as the curl of a vector (Fg3 = VX Aj). In

fact, does the job. For the vector potential, we have

8{3‘2 — 6;; = yz, which suggests A, = 4y z+ f(m,2); Ay = —2yz* + g(z,y)
ZBAZ 3£z =1z, suggesting A, = 42 224+ h(x,y); A, = —lzm +j(y, 2)
890 aaiyl:‘ry’ S0 A :—ij—Fk( )’ Am:__xy +l( )

Putting this all together: | Ag = 1 {z (22 — y?) & +y (z? — 22) § + 2 (y* — 2?) 2} | (again, not unique).

Problem 1.51
(d) = (a) VXF =VXx(-VU)=0 (Eq. 1.44 — curl of gradient is always zero).
(a) = fF dl = f(VXF) -da =0 (Eq. 1.57-Stokes’ theorem).

(c)= (b): [P, F-dl— [P F-dl=[>F-dl+ [ F-dl=§F dl=0,s0

b b
/ F'dl:/ F-dlL
Ja T Ja IT

(b) = (c): same as (¢) = (b), only in reverse; (¢) = (a): same as (a)= (c).
Problem 1.52

(d) = (a): V.-F=V(VXxW) =0 (Eq l.46—divergence of curl is always zero).
(a) = (¢): §F-da= [(V-F)dr =0 (Eq. 1.56—divergence theorem).

(©2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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CHAPTER 1. VECTOR ANALYSIS 19

/Foda:/ F - da.
Jr Jir

(Note: sign change because for § F - da, da is outward, whereas for surface II it is inward.)
(b) = (c): same as (c) = (b), in reverse; (c)= (a): same as (a)= (c) .
Problem 1.53
In Prob. 1.15 we found that V.v, = 0; in Prob. 1.18 we found that VXxv,. = 0. So
| v, can be written as the gradient of a scalar; v, can be written as the curl of a vector. |

(a) To find ¢:

1) FE=v*=t=y’z+f(y,2)
2) g—; = (2zy + 2?)
(3) g—i = 2yz

From (1) & (3) we get 8L = 2yz = f = y22 + g(y) = t = y?x +y22 + g(y), so G = 2wy + 22 + G2 =

22y + 2° (from (2)) = g% = 0. We may as well pick g = 0; then

LW, W, 2. oW, W, _ . 2. W, oW, _
(b) To find W: Tyi 5. —T% 5 T Tar T 3z°x; 5z TUL = —2xz.

Pick W, = 0; then

ow. 3
8_:172 = a2 =W, = 7515222 + f(y,2)
ow,
O_y = 2zz=W, =22+ g(y, 2).
z
%—VZ"—%—MZ/’L:%S+;U2—%ZZ=;L‘2:>%5—%’ZZ:O. May as well pick f =g =0.
W= 2229 — %xzzz 7.
Xy z
Check: VxW =& &L L |=%(2?)+y (322%) +2(—222).v
0 —z?z —32%22

You can add any gradient (Vt) to W without changing its curl, so this answer is far from unique. Some
other solutions:

W =z22% — 2229,
W = (Qxyz + 5023) %+ 22y 2;
W =azyz % — 32729 + 2% (y — 327) 2.
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20 CHAPTER 1. VECTOR ANALYSIS

Problem 1.54

10,45 4 1 0 ,. 9 1 0 9 .
Vv = ol ( r COSG) + 50 50 (511197“ cosqb) + rsin@% (—7“ cos@squﬁ)
1
= —4r’cos + —— cosOr? cos ¢ + — (—1"2 cos@cos¢)
72 7 sin rsin 6
rcosf

= — [4sin 6 + cos ¢ — cos ] = 4r cos b.
sin 6

/2 /2

R
/(V-V)dT = /(4rcos€)r251n9drdt9d¢:4/7‘3dr/cos@sin&d@/d(b
0

=) (3) (3) <[

Surface consists of four parts:
(1) Curved: da = R?>sinfldfdpt; r=R. v-da= (R2 cos 6) (R2 sin 6 df dd)) .

w/2 /2

_ ! - _pr (L) () 2R
/v da=R /cos@sm@d@/d¢—R (2 (2>— TR
0 0

(2) Left: da= —rdrdf; ¢ =0. v-da= (r’cosfsing)(rdrdd) =0. [v-da=0.
(3) Back: da=rdrdf; ¢ =7/2. v-da= (—r?cosfsing) (rdrdf) = —r3 cosfdrdb.

R /2 )
/v-da: /r3dr / cosfdf = — (ZR4> (+1) = —%R‘l.
0 0

4) Bottom: da = rsinfdr A; =m/2. v-da= (r°cos rdr .
B d Odrde@; 0 d 2 @) (rdrdep

R /2
1
/v~da:/r3dr/cos¢d¢:ZR4.
0 0
Total: §v-da=rR'/4+0— IR +1R' =22
Problem 1.55
Xy Z
VXxv = %8%% =z(b—a). So [(VXv)-da=(b—a)nR>
ay bx 0

v-dl=(ayx+bxy)  (drk+dyy +dz2) = aydr + bxdy; 2> +y*> = R? = 2xdx + 2y dy = 0,
sody =—(z/y)dx. So v-dl=aydx +bx(—z/y)dx = %/ (ay? — ba?) dz.
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R2—22)—pz?
For the “upper” semicircle, y = vV R2 — 22, so v - dl = (R —o?) ba? dz.

VI
_RaRQ—(a—I—b)m2 9 . (T x R? | /x -
/v-dl = dez {aR sin (E) — (a+b) [—Em—F?sm (E)]} .
R
1 o - _Rlz .1 .1 1 5 T w
= 5R (a—b)sin™" (z/R) . = §R (a—0b) (sin™"(—1) —sin™"(+1)) = iR (a—0b) (—5 - 5)
= %’R‘R%b*d).

And the same for the lower semicircle (y changes sign, but the limits on the integral are reversed) so
§v-dl=nR*b—a). v

Problem 1.56

(zx=2=0;de=dz=0; y:0—1. v-dl=(yz?)dy=0; [ v-dl=0.

(2)ax=0; 2=2-2y; dz = —2dy; y:1—0. v-dl=(yz?)dy+By+2)dz =y(2—2y)*dy— (3y+2—2y)2dy;

0
. 4 43 2
/v-dl:2/(2y3—4y2+y_2)dy:2 <y__i+y__2y>
1

O 14

2 3 2 .3

B)zx=y=0;dr=dy=0; 2:2—0. v-dl=0By+2)dz=z2dz;

Total.'fv-dlzo—&—%l— = %.

Meanwhile, Stokes’ thereom says § v - dl = [(VXV) - da. Here da = dydz %, so all we need is
(VXv), = 3—(;(3y +2z)— %(yzQ) =3 —2yz.  Therefore

(VXv)-da = (3—2yz)dydz = 1 2—21/(3 —2yz)dz| dy
: o LJo

1
= / 3(2—2y) —2y3(2—2y)?] dy = / (—4y® + 8y* — 10y + 6) dy
0 0

1
= (—y4—|—§y3—5y2+6y)‘02—1—|—§—5—}—6:%./

Problem 1.57
Start at the origin.

1 =L ¢=0;7r:0—-1. v-dl=(rcos r)=0. v-dl=0.
=73, ¢ dl 20) (d dl

/2
(2) r=1,0=%; ¢:0—>7/2. v-dl=(3r)(rsinfd¢) =3dp. [v-dl=3 [ dp= 3.
0
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(3) =73 rsinf=y=1,s0r =gy dr=_35co80d0, 6:F — 0 =tan"1(1/2).

2 .
v-dl = (rcos®8) (dr) — (rcossin6)(r df) = CSC;Z 69 (—%) df — % df

3 2 . 2
B _(COS 0 c059> 40 = cosf (cos 0 + sin 9) dez_cosﬁ

= — — de.
sin®@  sind sin @ sin® sin® 0
Therefore
P cost 1% 1 1 501
COSs
odl = — ——df = = — =-_-=2
/V / sin® 9 2sin?0),,, 2-(1/5) 2-(1) 2 2
/2

4 0=0, p=2:1:v5—0. v-dl=(rcos?0) (dr) = 2rdr.
2

Total:

%v-dl:0+3§+2—2: 3r

Stokes’ theorem says this should equal [(VXV) - da

1 o ) ) . 171 0 2 0
VXv = — [%(snﬂ?ﬂ") - %(—7’511190059)} r+ - [sin@ 9% (rcos®6) — 8T(T3T) 0
1[0 . 0 2 i
+ . [a(—rrcosesmﬁ) ~ 30 (TCOS 9)} o]

1 .
[—2r cos@sin € + 2r cos Osin ] ¢

1 .1 A
= TSine[?)rcosG]r—l— ;[—67’]9—!-

= 3cotff —60.

r

(1) Back face: da = —rdrdf¢; (Vxv)-da=0. [(Vxv)-da=0.

(2) Bottom: da = —rsinfdrdg0:; (Vxv)-da=6rsinfdrdg. 0 =7, so (VXv)-da=6rdrdo

1 /2
/(va)~da=0/6rdr0/d¢:6-

N —
NS
[\

Problem 1.58
v-dl=ydz.

(1) Left side: z=a—x; dz = —dz; y=0. Therefore [v-dl=0.
(2) Bottom: dz=0. Therefore [v-dl=0.
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0 2
(3) Back: z=a— 3y; dz=—-1/2dy; y:2a > 0. [v-dl= [y(—3dy)=—3%
2a

Meanwhile, VXv = &, so [(V XV) - da is the projection of this surface on the =y plane = % ca-2a=a’ Vv
Problem 1.59

10 1o,
ﬁa( rsinQa_(r tan@)

0 .
" 1195 (sin64rzcos¢9) +
sir

r2r? sin 6) +

1 1 4r

= 547“3 sin 6 + = 947“2 (cos2 6 — sin? 6) = ﬁ (sin2 6 + cos? # — sin? 9)
cos? 0

r

sinf

7T/6 21

R
/(V.v) dr = / (4TL;:1 96> (r’sin@drdf de) = /4r3 dr / 00529d9/d¢ = (R") (2m) {g + 511;29]
0 0

0

in 60° R* 3
:27TR4<1+SIH >=7T—<7T+3\/7_>: ”1—134(277—1—3\/3).

/6

0

12 4 6

Surface coinsists of two parts:

(1) Theice cream: 7= R; ¢ : 0 — 2m; 6 : 0 — 7/6; da = R?sinfdf d¢ ¢; v-da = (R*sin6) (R?*sinf df d¢) =

R*sin?6do do.
/6 27
/6 4
1, 1 T 1 TR V3
i — ph L2 _ (p4 B _ af T L ey T gV
/vda R /sm 0d9/d¢) (R*) (2m) [29 451n2<9]0 27 R <12 4sm60> 5 <7r 3 5
0 0

(2) The cone: 0 =7%; ¢:0—2m; 7:0— R; da:rsin9d¢dré:32£rdrd¢é; v-da=/3r3drde

27

R R /3
/v-da:\/§/r3dr/d¢:\/§-f-2ﬂ:7ﬂ}?4.
0 0

Therefore [v-da = ”1;4 (% — ‘/7§ + \/§) = ”1—134 (27r + 3\/3) V.

Problem 1.60
(a) Corollary 2 says §(VT)-dl = 0. Stokes’ theorem says §(VT)-dl = [[VX(VT)]-da. So [[Vx(VT)]-da=0,
and since this is true for any surface, the integrand must vanish: Vx(VT) = 0, confirming Eq. 1.44.
(b) Corollary 2 says ¢(V xv)-da = 0. Divergence theorem says §(Vxv)-da= [ V-(Vxv)dr.So [ V-(VXV)dr
= 0, and since this is true for any volume, the integrand must vanish: V(V xv) = 0, confirming Eq. 1.46.
Problem 1.61

(a) Divergence theorem: §v-da = [(V-v)dr. Let v = T, where ¢ is a constant vector. Using product
rule #5 in front cover: V-.v = V+(cT') =T(V-c)+c-(VT). But c is constant so V-c = 0. Therefore we have:
Je¢-(VT)dr = [Tc - da. Since c is constant, take it outside the integrals: ¢- [VT'dr = ¢ - [T da. But ¢
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24 CHAPTER 1. VECTOR ANALYSIS

is any constant vector—in particular, it could be be X, or ¥, or Z—so each component of the integral on left
equals corresponding component on the right, and hence

/VTdT = /Tda. qed

(b) Let v.— (v x ¢) in divergence theorem. Then [V-:(v x ¢)dr = [(v X ¢) - da. Product rule #6 =
Vi (vxec)=c-(Vxv)—v-:-(Vxc)=c-(Vxv). (Note: Vxc =0, since c is constant.) Meanwhile vector
indentity (1) says da- (v xc) =c-(daxv) = —c- (v xda). Thus [c¢-(VXv)dr =— [c- (v x da). Take c
outside, and again let ¢ be X, ¥, Z then:

/(va)de—/vxda. qed

(c) Let v =TVU in divergence theorem: [V-(I'VU)dr = [TVU -da. Product rule #(5) = V-(I'VU) =
TV-(VU)+ (VU) - (VT) =TV?U + (VU) - (VT). Therefore

/ (TV?U + (VU) - (VT)) dr = / (T'VU)-da. qed

(d) Rewrite (¢) with T < U : [ (UV?T + (VT)-(VU)) dr = [(UVT)-da. Subtract this from (c), noting
that the (VU) - (VT) terms cancel:

/ (ITV?U —UV?T) dr = / (TVU —~UVT)-da. qed

(e) Stokes’ theorem: [(VXv)-da= §v-dl Let v =cT. By Product Rule #(7): VX (cT) =T(Vxc)—
¢ X (VT) = —c x (VT) (since c is constant). Therefore, — [(c x (VT))-da = § Tc-dl. Use vector indentity
#1 to rewrite the first term (¢ x (VT))-da=c- (VT x da). So — [¢- (VT xda) = § c-Tdl. Pull c outside,

and let ¢ — X, ¥, and Z to prove:
/VTxda:—jéle. qed
Problem 1.62

(a) da = R%sin 0 df d¢ #. Let the surface be the northern hemisphere. The % and § components clearly integrate
to zero, and the Z component of T is cos#, so

.
sin“ 6 |7/2 -
—_— =|7R?%.

0

w/2
a:/R2sin90056d9d¢2:27rR22/ sinfcos0df = 2rR? %
0

(b) Let T'=1 in Prob. 1.61(a). Then VT =0, so § da = 0. ged

(c) This follows from (b). For suppose a; # ag; then if you put them together to make a closed surface,
§da=a; —ay #£0.

(d) For one such triangle, da = %(r x dl) (since r x dl is the area of the parallelogram, and the direction is
perpendicular to the surface), so for the entire conical surface, a = % f r X dlL

(e) Let T' = c - r, and use product rule #4: VI' = V(c-r) = ¢ x (VXr) 4+ (¢ - V)r. But Vxr = 0, and
(c-V)r= (c:,% +Cya% —I—CZ%)(xf{—l—yy—i—zi) =cyX+cyy+c,2=c. So Prob. 1.61(e) says

%le:%(c-r)dl:—/(VT)xda:—/cxda:—cx/da:—cxa:axc. qed
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Problem 1.63

(1)

_ 19 2 — —
V"“ﬁ&(?“ ';> A

For a sphere of radius R:
[v-da=[ (% ) (R*sinfdfd¢t) = R [sinfdfd¢ = 4w R.
R So divergence
[(Vv)dr = [(5%) (r*sinfdrdfdo) = (f dr) ([sin@dfd¢) = 4rR. ( theorem checks.
0

Evidently there is no delta function at the origin.

" - 10 n 19 ,, 1 " -
VX (1" 8) = o (1) = 5o (77F) = S0+ 2t = | (n 4 2

(except for n = —2, for which we already know (Eq. 1.99) that the divergence is 47d%r)).

(2) Geometrically, it should be zero. Likewise, the curl in the spherical coordinates obviously gives

To be certain there is no lurking delta function here, we integrate over a sphere of radius R, using
?

Prob. 1.61(b): If VX(r"#) = 0, then [(VXVv)dr = 0 = —§v x da. But v.= r"# and da =
R?sinfdfd¢ i are both in the # directions, so v x da = 0. v’

Problem 1.64
(a) Since the argument is not a function of angle, Eq. 1.73 says

po L1df,/1 2r 1 d r
- Awr2dr 2) (r24€2)3/2]  AnrZdr | (r2 + €2)3/2
1 [( 3r2 ; 3 2r ] 1 3r? (1 e 1?) 3¢2 /

amr? | (r2 + €2)3/2 2 (r2 4 €2)5/3 = A2 (r2 + €2)5/2 A (r2 4 €2)3/2°

(b) Setting r — 0:
3¢2 3
D(0,¢) = = —,
0,€) 4med  4med’

which goes to infinity as € — 0. v/
(c) From (a) it is clear that D(r,0) = 0 for r # 0. v/

(@ 2
2, a2 [T r a2 L)
/D(T, €) 4mrr® dr = 3¢ /0 RV dr = 3¢ (362> =1V

(I looked up the integral.) Note that (b), (c), and (d) are the defining conditions for §3(r).
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