
Chapter 2

Problem 2.1

1. Π (2t + 5) = Π
(
2
(
t + 5

2

))
. This indicates first we have to plot Π(2t) and then shift it to left

by 5
2 . A plot is shown below:

✻

−11
4 −9

4

✲ t

Π (2t + 5)

1

2.
∑∞
n=0Λ(t − n) is a sum of shifted triangular pulses. Note that the sum of the left and right

side of triangular pulses that are displaced by one unit of time is equal to 1, The plot is given

below

✲

✻

t

x2(t)

−1

1

3. It is obvious from the definition of sgn(t) that sgn(2t) = sgn(t). Therefore x3(t) = 0.

4. x4(t) is sinc(t) contracted by a factor of 10.
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Problem 2.2

1. x[n] = sinc(3n/9) = sinc(n/3).
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2. x[n] = Π
(
n
4−1

3

)
. If −1

2 ≤
n
4−1

3 ≤ 1
2 , i.e., −2 ≤ n ≤ 10, we have x[n] = 1.

−20 −15 −10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3. x[n] = n
4u−1(n/4)− (n4 − 1)u−1(n/4− 1). For n < 0, x[n] = 0, for 0 ≤ n ≤ 3, x[n] = n

4 and

for n ≥ 4, x[n] = n
4 − n

4 + 1 = 1.
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Problem 2.3

x1[n] = 1 and x2[n] = cos(2πn) = 1, for all n. This shows that two signals can be different but

their sampled versions be the same.

Problem 2.4

Let x1[n] and x2[n] be two periodic signals with periods N1 and N2, respectively, and let N =
LCM(N1,N2), and define x[n] = x1[n]+x2[n]. Then obviously x1[n+N] = x1[n] and x2[n+N] =
x2[n], and hence x[n] = x[n+N], i.e., x[n] is periodic with period N.

For continuous-time signals x1(t) and x2(t) with periods T1 and T2 respectively, in general we

cannot find a T such that T = k1T1 = k2T2 for integers k1 and k2. This is obvious for instance if

T1 = 1 and T2 = π . The necessary and sufficient condition for the sum to be periodic is that T1
T2

be a

rational number.

Problem 2.5

Using the result of problem 2.4 we have:

1. The frequencies are 2000 and 5500, their ratio (and therefore the ratio of the periods) is

rational, hence the sum is periodic.

2. The frequencies are 2000 and 5500
π . Their ratio is not rational, hence the sum is not periodic.

3. The sum of two periodic discrete-time signal is periodic.
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4. The fist signal is periodic but cos[11000n] is not periodic, since there is no N such that

cos[11000(n+N)] = cos(11000n) for all n. Therefore the sum cannot be periodic.

Problem 2.6

1)

x1(t) =




e−t t > 0

−et t < 0

0 t = 0

=⇒ x1(−t) =




−e−t t > 0

et t < 0

0 t = 0

= −x1(t)

Thus, x1(t) is an odd signal

2) x2(t) = cos
(
120πt + π

3

)
is neither even nor odd. We have cos

(
120πt + π

3

)
= cos

(
π
3

)
cos(120πt)−

sin
(
π
3

)
sin(120πt). Therefore x2e(t) = cos

(
π
3

)
cos(120πt) and x2o(t) = − sin

(
π
3

)
sin(120πt).

(Note: This part can also be considered as a special case of part 7 of this problem)

3)

x3(t) = e−|t| =⇒ x3(−t) = e−|(−t)| = e−|t| = x3(t)

Hence, the signal x3(t) is even.

4)

x4(t) =



t t ≥ 0

0 t < 0
=⇒ x4(−t) =




0 t ≥ 0

−t t < 0

The signal x4(t) is neither even nor odd. The even part of the signal is

x4,e(t) = x4(t)+ x4(−t)
2

=




t
2 t ≥ 0
−t
2 t < 0

= |t|
2

The odd part is

x4,o(t) = x4(t)− x4(−t)
2

=




t
2 t ≥ 0
t
2 t < 0

= t
2

5)

x5(t) = x1(t)− x2(t) =⇒ x5(−t) = x1(−t)− x2(−t) = x1(t)+ x2(t)

Clearly x5(−t) ≠ x5(t) since otherwise x2(t) = 0 ∀t. Similarly x5(−t) ≠ −x5(t) since otherwise

x1(t) = 0 ∀t. The even and the odd parts of x5(t) are given by

x5,e(t) = x5(t)+ x5(−t)
2

= x1(t)

x5,o(t) = x5(t)− x5(−t)
2

= −x2(t)
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Problem 2.7

For the first two questions we will need the integral I =
∫
eax cos2 xdx.

I = 1

a

∫
cos2 x deax = 1

a
eax cos2 x + 1

a

∫
eax sin 2x dx

= 1
a
eax cos2 x + 1

a2

∫
sin 2x deax

= 1

a
eax cos2 x + 1

a2
eax sin 2x − 2

a2

∫
eax cos 2x dx

= 1

a
eax cos2 x + 1

a2 e
ax sin 2x − 2

a2

∫
eax(2 cos2 x − 1) dx

= 1
a
eax cos2 x + 1

a2
eax sin 2x − 2

a2

∫
eax dx − 4

a2
I

Thus,

I = 1

4+ a2

[
(a cos2 x + sin 2x)+ 2

a

]
eax

1)

Ex = lim
T→∞

∫ T
2

− T2
x2

1(t)dx = lim
T→∞

∫ T
2

0
e−2t cos2 tdt

= lim
T→∞

1

8

[
(−2 cos2 t + sin 2t)− 1

]
e−2t

∣∣∣∣
T
2

0

= lim
T→∞

1

8

[
(−2 cos2 T

2
+ sinT − 1)e−T + 3

]
= 3

8

Thus x1(t) is an energy-type signal and the energy content is 3/8

2)

Ex = lim
T→∞

∫ T
2

− T2
x2

2(t)dx = lim
T→∞

∫ T
2

− T2
e−2t cos2 tdt

= lim
T→∞



∫ 0

− T2
e−2t cos2 tdt +

∫ T
2

0
e−2t cos2 tdt




But,

lim
T→∞

∫ 0

− T2
e−2t cos2 tdt = lim

T→∞
1

8

[
(−2 cos2 t + sin 2t)− 1

]
e−2t

∣∣∣∣
0

− T2

= lim
T→∞

1

8

[
−3+ (2 cos2 T

2
+ 1+ sinT)eT

]
= ∞

since 2+ cosθ + sinθ > 0. Thus, Ex = ∞ since as we have seen from the first question the second

integral is bounded. Hence, the signal x2(t) is not an energy-type signal. To test if x2(t) is a

power-type signal we find Px.

Px = lim
T→∞

1

T

∫ 0

− T2
e−2t cos2 dt + lim

T→∞
1

T

∫ T
2

0
e−2t cos2 dt

7



But limT→∞
1
T

∫ T
2

0 e
−2t cos2 dt is zero and

lim
T→∞

1

T

∫ 0

− T2
e−2t cos2 dt = lim

T→∞
1

8T

[
2 cos2 T

2
+ 1+ sinT

]
eT

> lim
T→∞

1

T
eT > lim

T→∞
1

T
(1+ T + T2) > lim

T→∞
T = ∞

Thus the signal x2(t) is not a power-type signal.

3)

Ex = lim
T→∞

∫ T
2

− T2
x2

3(t)dx = lim
T→∞

∫ T
2

− T2
sgn2(t)dt = lim

T→∞

∫ T
2

− T2
dt = lim

T→∞
T = ∞

Px = lim
T→∞

1

T

∫ T
2

− T2
sgn2(t)dt = lim

T→∞
1

T

∫ T
2

− T2
dt = lim

T→∞
1

T
T = 1

The signal x3(t) is of the power-type and the power content is 1.

4)

First note that

lim
T→∞

∫ T
2

− T2
A cos(2πft)dt =

∞∑

k=−∞
A

∫ k+ 1
2f

k− 1
2f

cos(2πft)dt = 0

so that

lim
T→∞

∫ T
2

− T2
A2 cos2(2πft)dt = lim

T→∞
1

2

∫ T
2

− T2
(A2 +A2 cos(2π2ft))dt

= lim
T→∞

1

2

∫ T
2

− T2
A2dt = lim

T→∞
1

2
A2T = ∞

Ex = lim
T→∞

∫ T
2

− T2
(A2 cos2(2πf1t)+ B2 cos2(2πf2t)+ 2AB cos(2πf1t) cos(2πf2t))dt

= lim
T→∞

∫ T
2

− T2
A2 cos2(2πf1t)dt + lim

T→∞

∫ T
2

− T2
B2 cos2(2πf2t)dt +

AB lim
T→∞

∫ T
2

− T2
[cos2(2π(f1 + f2)+ cos2(2π(f1 − f2)]dt

= ∞+∞+ 0 = ∞

Thus the signal is not of the energy-type. To test if the signal is of the power-type we consider two

cases f1 = f2 and f1 ≠ f2. In the first case

Px = lim
T→∞

1

T

∫ T
2

− T2
(A+ B)2 cos2(2πf1)dt

= lim
T→∞

1

2T
(A+ B)2

∫ T
2

− T2
dt = 1

2
(A+ B)2

8



If f1 ≠ f2 then

Px = lim
T→∞

1

T

∫ T
2

− T2
(A2 cos2(2πf1t)+ B2 cos2(2πf2t)+ 2AB cos(2πf1t) cos(2πf2t))dt

= lim
T→∞

1
T

[
A2T

2
+ B

2T

2

]
= A

2

2
+ B

2

2

Thus the signal is of the power-type and if f1 = f2 the power content is (A + B)2/2 whereas if

f1 ≠ f2 the power content is 1
2(A

2 + B2)

Problem 2.8

1. Let x(t) = 2Λ
(
t
2

)
− Λ(t), then x1(t) =

∑∞
n=−∞x(t − 4n). First we plot x(t) then by shifting

it by multiples of 4 we can plot x1(t). x(t) is a triangular pulse of width 4 and height 2

from which a standard triangular pulse of width 1 and height 1 is subtracted. The result is a

trapezoidal pulse, which when replicated at intervals of 4 gives the plot of x1(t).

✲

✻

t

x1(t)

1

2−2 6−6

2. This is the sum of two periodic signals with periods 2π and 1. Since the ratio of the two

periods is not rational the sum is not periodic (by the result of problem 2.4)

3. sin[n] is not periodic. There is no integer N such that sin[n+N] = sin[n] for all n.

Problem 2.9

1)

Px = lim
T→∞

1

T

∫ T
2

−T
2

A2
∣∣∣ej(2πf0t+θ)

∣∣∣2
dt = lim

T→∞
1

T

∫ T
2

−T
2

A2dt = lim
T→∞

1

T
A2T = A2

Thus x(t) = Aej(2πf0t+θ) is a power-type signal and its power content is A2.

2)

Px = lim
T→∞

1
T

∫ T
2

−T
2

A2 cos2(2πf0t + θ)dt = lim
T→∞

1
T

∫ T
2

−T
2

A2

2
dt + lim

T→∞
1
T

∫ T
2

−T
2

A2

2
cos(4πf0t + 2θ)dt

As T → ∞, the there will be no contribution by the second integral. Thus the signal is a power-type

signal and its power content is A2

2 .
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3)

Px = lim
T→∞

1

T

∫ T
2

−T
2

u2
−1(t)dt = lim

T→∞
1

T

∫ T
2

0
dt = lim

T→∞
1

T

T

2
= 1

2

Thus the unit step signal is a power-type signal and its power content is 1/2

4)

Ex = lim
T→∞

∫ T
2

−T
2

x2(t)dt = lim
T→∞

∫ T
2

0
K2t−

1
2dt = lim

T→∞
2K2t

1
2

∣∣∣∣
T/2

0

= lim
T→∞

√
2K2T

1
2 = ∞

Thus the signal is not an energy-type signal.

Px = lim
T→∞

1

T

∫ T
2

−T
2

x2(t)dt = lim
T→∞

1

T

∫ T
2

0
K2t−

1
2dt

= lim
T→∞

1

T
2K2t

1
2

∣∣∣∣
T/2

0
= lim
T→∞

1

T
2K2(T/2)

1
2 = lim

T→∞

√
2K2T−

1
2 = 0

Since Px is not bounded away from zero it follows by definition that the signal is not of the power-

type (recall that power-type signals should satisfy 0 < Px <∞).

Problem 2.10

Λ(t) =




t + 1, −1 ≤ t ≤ 0

−t + 1, 0 ≤ t ≤ 1

0, o.w.

u−1(t) =




1 t > 0

1/2 t = 0

0 t < 0

Thus, the signal x(t) = Λ(t)u−1(t) is given by

x(t) =




0 t < 0

1/2 t = 0

−t + 1 0 ≤ t ≤ 1

0 t ≥ 1

=⇒ x(−t) =




0 t ≤ −1

t + 1 −1 ≤ t < 0

1/2 t = 0

0 t > 0

The even and the odd part of x(t) are given by

xe(t) = x(t)+ x(−t)
2

= 1

2
Λ(t)

xo(t) = x(t)− x(−t)
2

=




0 t ≤ −1
−t−1

2 −1 ≤ t < 0

0 t = 0
−t+1

2 0 < t ≤ 1

0 1 ≤ t
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Problem 2.11

1) Suppose that

x(t) = x1
e (t)+ x1

o(t) = x2
e (t)+ x2

o(t)

with x1
e (t), x

2
e (t) even signals and x1

o(t), x
1
o(t) odd signals. Then, x(−t) = x1

e (t)− x1
o(t) so that

x1
e (t) = x(t)+ x(−t)

2

= x2
e (t)+ x2

o(t)+ x2
e (−t)+ x2

o(−t)
2

= 2x2
e (t)+ x2

o(t)− x2
o(t)

2
= x2

e (t)

Thus x1
e (t) = x2

e (t) and x1
o(t) = x(t)− x1

e (t) = x(t)− x2
e (t) = x2

o(t)

2) Let x1
e (t), x

2
e (t) be two even signals and x1

o(t), x
2
o(t) be two odd signals. Then,

y(t) = x1
e (t)x

2
e (t) =⇒ y(−t) = x1

e (−t)x2
e (−t) = x1

e (t)x
2
e (t) = y(t)

z(t) = x1
o(t)x

2
o(t) =⇒ z(−t) = x1

o(−t)x2
o(−t) = (−x1

o(t))(−x2
o(t)) = z(t)

Thus the product of two even or odd signals is an even signal. For v(t) = x1
e (t)x

1
o(t) we have

v(−t) = x1
e (−t)x1

o(−t) = x1
e (t)(−x1

o(t)) = −x1
e (t)x

1
o(t) = −v(t)

Thus the product of an even and an odd signal is an odd signal.

3) One trivial example is t + 1 and t2

t+1 .

Problem 2.12

1) x1(t) = Π(t)+Π(−t). The signal Π(t) is even so that x1(t) = 2Π(t)

. . . . . . . . . . . . . . . . . .1

2

1
2

1
2
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2)

x2(t) = Λ(t) ·Π(t) =




0, t < −1/2

1/4, t = −1/2

t + 1, −1/2 < t ≤ 0

−t + 1, 0 ≤ t < 1/2

1/4, t = 1/2

0, 1/2 < t

. . . . . . . . .

.

.

.

.

.

.

.

.

.

.
1
4

−1
2

1
2

1

3) x3(t) =
∑∞
n=−∞Λ(t − 2n)

... ...

−3 −1 31

1

4) x4(t) = sgn(t)+ sgn(1− t). Note that x4(0) = 1, x4(1) = 1

.

.

.

.

.

.

.

.

.
0

2

1

5) x5(t) = sinc(t)sgn(t). Note that x5(0) = 0.
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Problem 2.13

1) The value of the expression sinc(t)δ(t) can be found by examining its effect on a function φ(t)

through the integral

∫∞
−∞
φ(t)sinc(t)δ(t) = φ(0)sinc(0) = sinc(0)

∫∞
−∞
φ(t)δ(t)

Thus sinc(t)δ(t) has the same effect as the function sinc(0)δ(t) and we conclude that

x1(t) = sinc(t)δ(t) = sinc(0)δ(t) = δ(t)

2) sinc(t)δ(t − 3) = sinc(3)δ(t − 3) = 0.

3)

x3(t) = Λ(t) ⋆

∞∑
n=−∞

δ(t − 2n)

=
∞∑

n=−∞

∫∞
−∞
Λ(t − τ)δ(τ − 2n)dτ

=
∞∑

n=−∞

∫∞
−∞
Λ(τ − t)δ(τ − 2n)dτ

=
∞∑

n=−∞
Λ(t − 2n)
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