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Sets, Relations, and Languages

1.1 | SETS

Problem 1.1.1

(a) true. Every set is a subset of itself, including 0.

(b) false. @ has no members, not even §.

(c) true. @ is certainly a member of {0}, the set whose one and only member is §.
(d) true. 0 is a subset of any set.

(e) true. {a,b,c,{a,b}} is the set whose elements are a, b, ¢, and {a,b}; clearly {a,b} is one of these
elements.

(f) true. The members of {a,b} are a and b, each of which is a member of {a, b, {a,b}}.
(2) false. The members of {a, b} are a and b, but every element of the powerset 2{:0:{2:0}} ig a set.

(h) true. Because ga, b} € {a,b,{a,b}}, it is also true that {{a,b}} C {a,b,{a,b}}. By definition of the
powerset, {{a,b}} € 21a:b:{e:}},

(i) false. {a,b, {a,b}} — {a,b} = {{a,b}}, not {a,b}.

Problem 1.1.2
(@) {3,5}

() {3,577}
() {1,2,7,9}.

(@) {{8}{7.8},{8,9},{7.8,9}}
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(e) {{}} (which is, of course, the same as {0}).

Problem 1.1.3

(a) First, we show the D direction. Suppose that € AU(BNC). Then, by the definition of set intersection
one of two cases applies: either z € Aorz € BNC.

Suppose the former. Then, because z € A, we know by the definition of set union that € AU B and
that z € AU C. Because z is in both AU B and AU C, by the definition of intersection, we conclude that
z€(AUB)N(AUQC).

On the other hand, suppose the latter — that z € BN C. In this case, by the definition of intersection, it
is true that € B and = € C. Applying the definition of union twice gives us that z € AUB and z € AUC.
From this, by the definition of intersection, we have z € (AU B)N (AU C).

Now we show the C direction. Suppose that z € (AUB)N(AUC). Then, by the definition of intersection,
z€eAUBandz e AUC.

Suppose that £ € A. Then, by the definition of union, z € AU (BN C).

On the other hand, suppose = € A. Since z € AU B, it must be the case that z € B. Similarly, because
z € AU C, it must be true that z € C. Thus, by definition of intersection, z € B N C. Then, by definition
of union, z € AU (BNC).

(b) Suppose z € AN (BUC). Then by definition of intersection z € A and = € (BU C). By applying the
definition of union to the latter, either z € B or z € C.

Suppose € B. Then, because z € A, by definition of intersection € AN B. By definition of union,
then, z € (ANB)U(ANC).

On the other hand, suppose z € C. Then because z € A, by definition of intersection x € ANC. By
definition of union, then, z € (AN B)U (ANC).

Suppose z € (ANB)U(ANC). Then either z € ANB or z € ANC. Without loss of generality, suppose
z € ANB. Then z € A and ¢ € B, by definition of N. Because z € B, by definition of U, z € BUC.
Because both z € A and z € BN C, by definition of N, z € AN (BUC).

(c) Suppose z € AN (AU B). Then, by definition of intersection, z € A and z € (AU B). Since all we
need to prove is that z € A, we are done.

Suppose z € A. Then, by definition of union, z € AU B. By definition of intersection, z € AN (AU B).

(d) Suppose z & A. Then, by definition of intersection, ¢ AN B. Since neither z € A nor z € AN B, by
definition of union, z ¢ AU (AN B).

Suppose x € A. Then by definition of union, z € AU (AN B).

(e) Suppose z € A— (BNC). Then z € A but z ¢ (BN C). By definition of intersection, either z ¢ B or
z ¢ C. Suppose, without loss of generality, that ¢ B. Then, because € A but = ¢ B, write z € A - B,
by definition of set difference. By definition of union, then, z € (A — B)U (A — C).

Suppose z € (A — B) U (A — C). Then either z € A— B or z € A— C. Suppose, without loss of
generality, z € A — B. Then z € A but z ¢ B. Because z ¢ B, by definition of intersection, z ¢ BN C.
Thus z € A — (BN C), by definition of set difference, because z € A.

Problem 1.1.4
(a) {{a,b,c,d}} has the fewest members. {{a}, {b},{c},{d}} has the most.
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(b) The following partitions have exactly two members:

{9,{a,b,c,d}} {{a},{b,c,d}}
{{}.{a,c,d}} {{c},{a,b,d}}
{{d},{a,b,c}} {{a,b},{c,d}}
{{a,c},{b,d}} {{a,d},{b,c}}

1.2 | RELATIONS AND FUNCTIONS

Problem 1.2.1
@) {@1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3)}

() 0

(c) {®1),({1},1),({2},1),({1,2}, 1),
@,1), ({1},2), ({2},2), ({1,2}, 2)}

Problem 1.2.2

RoR= {(aa a)’ (av b)’ (a,c¢), (a, d)v (b, a)a (b, b), (b, C)}

R = {(®,0), (c,a), (d,c),(a,a),(a, b)}.

R is not a function. R o R is not a function. R~! is not a function. In each case, both (a,a) and (a, b)
are elements of the relation, making R multivalued.

Problem 1.2.3

(a) The function whose values are given by g but whose domain is f(A) (this function is called the restriction
of g to f(A)) must be onto.

(b) f must be one-to-one and the restriction of g to f(A) must be one-to-one.

(c) f must be one-to-one and g must be a bijection between f(A) and C.

Problem 1.2.4

An element of {0,1}“ is a function g : A — {0,1} - that is to say, a set of ordered pairs of the form (a,n),
where a € A, n is 0 or 1, and there is exactly one pair (a,n) for each a € A. Then f : {0,1}4 — 24, where
f(g) is the set {a : (a,1) € g} will be the isomorphism we seek. Because f(g) C A, we have that f(g) € 24,
so f is a function.

Let us check that it is a bijection. If g and h are two different elements of {0,1}4, they are different
functions A — {0, 1}, so they must have different values for some a € A. Without loss of generality, suppose
g(a) = 0 and h(a) = 1. Then a ¢ f(g) (because (a,0) € g, it cannot also be the case that (a,1) € g, or else g
would not be a function), whereas a € f(h). Thus f(g) # f(h). Thus f does not take two distinct functions
to the same set and is one-to-one.

On the other hand, let S C A. Define the function g(a) = {1, if a € S;0, otherwise. Then f(g) = S, so
that f “hits” every subset of A and is thus is onto 24.

1.3 | SPECIAL TYPES OF BINARY RELATIONS
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Problem 1.3.1

) ©

(b) @ @

(c)

e

® ©
(@ @O @

Problem 1.3.2

(a) R is not reflexive, not symmetric, and not transitive. S is symmetric, but not reflexive or transitive.

(b) RUS is reflexive, but is neither symmetric nor transitive.
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Problem 1.3.3

(2)

(b)

Problem 1.3.4

(a) R is not reflexive. Take any random a € A — it is not the case that (a,a) € R.

(b) R is symmetric. Since there are no a and b such that (a,b) € R, we do not need to worry about
ensuring that (b,a) € R.

(c) R is anti-symmetric. Since there are no a and b such that (a,b) € R, we do not need to worry about
ensuring that (b,a) € R.

(d) R is transitive. Since there are no a,b, and c such that (a,b) € R and (b,¢) € R, we do not need to
worry about ensuring that (a,c) € R.

Problem 1.3.5

For any a € A, it is true that f(a) = f(a), so (a,a) € R for all a € A. Thus R is reflexive.

Suppose (a,b) € R. Then f(a) = f(b), from which we know that f(b) = f(a), so (b,a) € R. Thus R is
reflexive.

Suppose (a,b) € R and (b,c) € R. Then f(a) = f(b) and f(b) = f(c), so that f(a) = f(c), making
(a,c) € R. Thus R is transitive.

Problem 1.3.6

(a) R is a partial order. R is reflexive because every number is divisible by itself. R is anti-symmetric
because if b is divisible by a (with a # b), then a < b, so it cannot be the case that a is divisible by b. R is
transitive because if b is divisible by a then b = na, and similarly if ¢ is divisible by b then ¢ = mb. Then
¢ = nma, so that c is divisible by a. R is not a total order — for many pairs of numbers a and b,i it is not
the case that neither a is divisible by b or that b is divisible by a (for example, a = 2 and b = 3).

(b) R is not a partial order, since it is not anti-symmetric. ((1,2),(2,1)) € R and ((2,1),(1,2)) € R, but
(1,2) # (2,1). Since R is not a partial order, it is also not a total order.

(¢) R is not a partial order, since it is not transitive. (1,2) € R and (2,3) € R, but (1,3) ¢ R. Since R is
not a partial order, it is also not a total order.

(d) R is not a partial order, since it is not anti-symmetric. “pizza”, at five letters, is no longer than
“bagel”, also five letters. But “bagel” is also no longer than “pizza”. Since “pizza” # “bagel”, R is not
anti-symmetric. Since R is not a partial order, it is also not a total order.
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(e) Ris a partial order. R is reflexive because every word is the same as itself. R is anti-symmetric because
if @ occurs more frequently than b, b cannot occur more frequently than b. R is transitive because if @ appears
more frequently than b and b more frequently than ¢, a must appear more frequently than c. R is not a total
order because if two words a and b occur with equal frequency, then neither (a,b) € R nor (b,a) € R. For
example, “taxicab” and “ripoff” each occur exactly once in the text of the book (both on page 332).

Problem 1.3.7

R, N R, is reflexive. Let a be any element of A. Then, because both R; and R, are partial orders and thus
reflexive, (a,a) € R; and (a,a) € Re. Thus (a,a) € Ry N Rs.
R; N R, is anti-symmetric. Suppose (a,b) € R; N Re. Then (a,b) € Ry and (a,b) € R,. Because both
R; and R, are partial orders and thus anti-symmetric, (b,a) ¢ R; and (b,a) € Ry. Thus (b,a) € R1 N R,.
R; N Ry is transitive. Suppose (a,b) € Ry N Ry and (b,c) € Ry N Ry. Then (a,b) € Ry, (a,b) € Ry,
(b,c) € Ry, and (b,c) € Ry. Because R; and R, are partial orders and thus transitive, (a,c) € R; and
(a,c) € Ro. Therefore (a,c) € Ry N Rs.

Problem 1.3.8

(a) Rg is reflexive. Let A be any set in S. Because every set is a subset of itself, A C A, so that
(A,A) € Rs.

Rg is anti-symmetric. Suppose (4,B) € R and A # B. Then A C B. If B C A, this would mean that
A = B (by double inclusion), which we know is not the case. Thus B Z A, so that (B, A) ¢ R.

Rg is transitive. Suppose (4,B) € R and (B,C) € R. Then A C B and B C C. Because set inclusion is
itself transitive, A C C. Thus (A4,C) € R.

(b)
The minimal element under this order is 0.
Problem 1.3.9

A directed graph represents a function when there is exactly one arrow (“edge”) leading out of each node.

Problem 1.3.10

Let a be any element of A. By repeated applications of f, we can form the sequence of elements a, f(a), f(f(a)), f(f(f(a)a
If there are n elements in A, the first n+1 terms of this sequence must contain a duplicate (by the pigeonhole
principle, introduced in section 1.5). Let a; and a; be a pair of duplicate elements with ¢ < j such that there
is no other pair of duplicates ay and a; with [ — k < i — j. Then the sequence a;,a;41 -..aj-1,a; is a cycle.
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Problem 1.3.11

To show that R is a partial order, we need to show that it is reflexive, anti-symmetric, and transitive.

R is reflexive. Let II be any partition of S. Because II is a set of sets, for every S € II, it is the case
that S is a set, and thus we can say that S C S. Since S € II, we have found the set containing S that we
require. Since this works for any S € II, we conclude that (IL,II) € R.

R is anti-symmetric. Suppose (II;,IIs) € R, and that II; # II;. Then there must be some set X € II;
such that X; ¢ II,. Because II; refines Iy, there must be some set Xy € Il such that X; C X,. If X; = Xo,
then we would have X; € Il3, so it must be the case that X, € X, meaning that there is some z € X5 but
z ¢ X;. Further, because every set in a partition is non-empty, there must be some y € X; — and because
X; C X,, we have that y € Xo. But now, it cannot be the case that there is a set Y € II; such that X, C Y.
X, cannot be such a Y, because it does not contain z. Any element of II; other than X7, however, will fail
to contain y — each element of S can belong to only one set in the partition, and y belongs to X;. Thus
(I1g,1II,) ¢ R, because we have found a counterexample to the condition that every set in Il be included in
some set in II;.

R is transitive. Suppose (II;,II3) € R and (IIp,II3) € R. Let X; be any set in II;. Because II; refines
II, there is some set Xs € II; such that X; C X,. Because II; refines IIz, there is some set X3 € II3 such
that X5 C X3. Thus X; C X3, and for any set X; € II;, we can find a set X3 € II3 with X; C X3, so II;
refines Il3, and (II;,II3) € R. There is a unique minimal element of this partial order — the partition {S}.
There is also a unique maxmial element of this partial order — the partition whose elements are those sets
which each contain a single element of S.

If P is not required to be made up of partitions, R need not be a partial order. For a counter-example,
let S = {0,1}. Let II; = {{0},{0,1}} and II, = {{1},{0,1}}. It is true that (II;,II;) € R, and also the
case that (Ilz,II;) € R, but II; # I, thus violating the anti-symmetry condition. R does, however, remain
reflexive and transitive.

1.4 | FINITE AND INFINITE SETS

Problem 1.4.1

(a) If we don not require that our sets be disjoint, then the enumeration {ao, bo, co, a1, b1,c¢1,. ..} may suffer
from the problem that some element or elements may appear more than once. For example, suppose that
ap is the same as b;. We can easily avoid this problem, however, by “skipping” over duplicates the second
or third time we encounter them. In this example, that would mean that our enumeration would start with
{GO, bO’cﬂ’ a1,C1, a2, b2, C2,.. -}-

If any of the sets is finite, we can still represent it by an infinitely long sequence in which its elements
repeat endlessly — that is, {1,3,5} would become {1,3,5,1,3,5,1,3,5...}. Once again, if we skip over
duplicate elements each time we encounter them after the first, we have an enumeration in which each
element is unique. If all three sets are finite, this enumeration will be a bijection between some finite subset
of N and their union; if at least one is inifite, it will be a bijection between N and their union.

In general, to show that a set S is countable, we do not need to give a bijection f : N — S — any onto
function from the natural numbers to S will suffice, because it can be made into a bijection by the technique
given above.

(b) Any finite set of natural numbers has a finite sum. For any fixed n, there are only finitely many ways
of adding up distinct natural numbers to make n. For example, 3 can be written as 0+ 3, 0or 0+1+2,1+2,
or just 3. For each n € N, let the set N,, be the set of all sets of distinct natural numbers whose sum is n.
Each N, is finite, and thus countable, and since there is exactly one set IN,, for each n € N, the set of all
finite subsets of N. is the countably infinite union of the countable sets N,,, and is therefore countable.
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Problem 1.4.2
(a) Let f from N to the odd natural numbers be given by f(n) = 2n + 1.

(b) Let f from the set of all integers to N be given by
[ 22x-1 : >0
f(a:)—{ -2z : z<0
() Let f:N xN x N — N be given by

1. . 1. . .
fG k) = gli+i+k)7 + 50 +4)" +i

Problem 1.4.3
(a) By (1),0€C. By (2), {0,0} € C. We can rewrite {0,0} as {0}. By (2), {0,{0}} € C.

(b) Take the set S from part (a) and consider the set S x S. This set can be written out as
{(@,0),(9,{0}), ({0}, 0), ({0}, {O1)}-

(¢) No. Any set in C must be formed by one of the rules (1), (2), or (3). The empty set is finite, so
rule (1) cannot make any infinite sets. Rule (2) makes sets which contain either 1 or 2 elements (depending
upon whether S; = S2), so rule (2) cannot make any infinite sets. Rule (3) make sets which contain |S;|]Sz|
elements, which is finite when both S; and S are finite. Thus rule (3) cannot make infinite sets unless there
already are infinite sets already in C. This argument is a simple example of structural induction, a technique
of proof that will be useful repeatedly.

(d) C is countable. Let C, be the set of elements of C' which can be formed by at most n applications
of rule (1), (2), or (3), and define Cy to be @. In forming Cpy1 from Cp, we have a choice of a finite
number of rules to apply to a finite number of elements drawn from C,,. If C,, is finite, so then is Cp,11. By
mathematical induction (see chapter 1.5), C, is finite for all n. Every element of C' must be the result of
a finite number of applications of rules, and thus belongs to C,, for some n € N. Thus C is the countable
union of the finite sets Cy,, and is thus countable.

Problem 1.4.4

Consider the triangle with vertices (0,0), (¢ + j — 1,0), and (0,7 + j — 1). This triangle contains all the
ordered pairs whose sum is less than i + j. The dovetailing method first visits all these pairs, then visits all
pairs with sum i + j but first value less than ¢, and then visits (3, j).
The triangle contains Sil).(;i&ll pairs, and there are ¢ pairs with sum ¢ + j but smaller first value. Thus
there are
_ G+ +@+9)
(2)

pairs enumerated before (7,j). Since the enumeration starts with 0, this means that (3, j) is visited mth.

1
+i=§[(i+j)2+3i+j]

1.5 | THREE FUNDAMENTAL PROOF TECHNIQUES
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Problem 1.5.1

This result follows by induction on n.
Basis step. Suppose n = 0. Then:

01.9—0- D@E)
4
Induction hypothesis. Given n > 0 assume that for all ¥ < n:

12342344 +k-(k+1)-(k+2)= BTN *+2) - (k+3)

4
Induction step. Show true for n +1
1:2.3+-+((n+1)-m+2) - n+3)) = 1-2:34+---+n-(n+1)-m+2)+(n+1)-(n+2): (n+3)
(by inductive hypothesis) = n-(n+1)-(r:1+2)-(n+3)+4~(n+1)-(7;+2)-(n+3)
m+1)-n+2)-(n+3)-(n+4)

4

Problem 1.5.2

We show this result by induction on n.
Basis step. For n = 0, we have that n* — 4n? = 0, which is divisible by 3.
Induction hypothesis. Assume that n* — 4n% = 3r for some r € N.
Induction step.

(n+1)* —4(n+1)2 n* +4n® +6n% + 4n+ 1 — 4n® — 8n — 4)
n*+4n® +2n% + —4n -3

= (n*-—4n?)+4n® +6n° —4n -3

Applying the inductive hypothesis, we can substitute 3r for n* — 4n? to get

(n* —4n®)+4n® +6n2—4n—-3 = 3r+2n(2n’+3n-2)-3
= 3r+2n)2n-1)(n+2)-3

The first and third terms above are clearly divisible by 3; we need to show only that the middle term is also
divisible by 3. n must be of the form 3s, 3s+ 1, or 3s + 2. If n = 3s, then n is divisible by 3. If n = 35+ 1,
then n + 2 = 3s + 3, which is divisible by 3. And if n = 3s+ 2, then 2n —1=6s+4 — 1 = 6s + 3, which is
divisible by 3. In each case, the middle term is divisible by 3.

Problem 1.5.3

The problem is that the asserted base case of one horse is not the correct one. Consider the case when
n+ 1 = 2. Call the horses in the set Bucephalus and Mister Ed. When you discard Bucephalus, “all the
remaining horses,” meaning {Mister Ed}, “have the same color” by the inductive hypothesis. Call this color
c1. Put Bucephalus back into the set and “discard another.” The only possibility is Mister Ed, so discard
Mister. This time, “all the remaining horses,” referring to {Bucephalus}, “have the same color.” Call it cs.
So Bucephalus and Mister Ed have the same color as “the ones that were not discarded either time,” which
we shall call c3. That is, ¢; = ¢a = ¢3. But when n + 1 = 2, there are no horses in the set that were never
discarded, so there are no horses of color ¢3 to which we can apply the “is the same color as” relation to
conclude ¢; = c3 or ¢ = ¢3, and no meaningful fixed value for ¢3. Since the induction fails to show that if
the claim holds for 1 horses, then the claim holds for two horses, the entire proof fails.

Notice that if a proper base case were established, then the proof does show that all horses have the same
color — if any set of two horses were all the same color, than any set of three would be, and so on.



