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Chapter 1

Arithmetic in Z Revisited

1.1 The Division Algorithm

10.

(a) g=4,r=1. (b) ¢=0,r=0. (¢) ¢g=—-5,r=3.

(a) ¢g=-9,r=3. (b) ¢ =15,r=17. (¢) ¢ =117, r =11.

(a) ¢ =6, r=19. (b) ¢ =-9, r =54. (¢) ¢ =62720, r = 92.
(a) q = 15021, r = 132, (b) ¢ = —14940, r = 335. (¢) ¢ = 39763, r = 3997.

Suppose a = bg + r, with 0 < r < b. Multiplying this equation through by ¢ gives ac = (bc)q + rc.
Further, since 0 < r < b, it follows that 0 < rc < be. Thus this equation expresses ac as a multiple
of bc plus a remainder between 0 and bc — 1. Since by Theorem 1.1 this representation is unique,
it must be that ¢ is the quotient and rc the remainder on dividing ac by be.

When q is divided by ¢, the quotient is k, so that ¢ = ck. Thus a = bg + r = b(ck) +r = (be)k + .
Further, since 0 < r < b, it follows (since ¢ > 1) than 0 <r < be. Thus a = (bc)k + r is the unique
representation with 0 < r < be, so that the quotient is indeed k.

Answered in the text.

Any integer n can be divided by 4 with remainder r equal to 0, 1, 2 or 3. Then either n = 4k,
4k 4+ 1, 4k + 2 or 4k + 3, where k is the quotient. If n = 4k or 4k + 2 then n is even. Therefore if
n is odd then n = 4k + 1 or 4k + 3.

We know that every integer a is of the form 3¢, 3¢ + 1 or 3¢ + 2 for some ¢. In the last case
@’ = (3¢ + 2)° = 27¢ + 54¢ + 36¢ + 8 = 9k + 8 where k = 3¢’ + 6¢* + 44. Other cases are similar.

Suppose a = ng + rwhere 0 < r < nand ¢ = nq¢'+ r'where 0 < r'< n. If r = r'then a — ¢ =
n(qg— ¢) and k= ¢— ¢'is an integer. Conversely, given a — ¢ = nk we can substitute to find:
(r—7r")=n(k— g+ ¢'). Suppose r 2 (the other case is similar). The given inequalities imply
that 0 < (r— /) < nand it follows that 0 < (k- ¢ + ¢) < ¥ and we conclude that k— ¢+ ¢'= 0.
Therefore r — ' = 0, so that r = r’ as claimed.
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Arithmetic in Z Revisited

11.

Given integers a and ¢ with ¢ #0. Apply Theorem 1.1 with b = [c| to get a = |c[ - g+ r where 0
<r<|c|l. Let ¢ = ¢y if ¢ > 0 and ¢ = —¢q, if ¢ < 0. Then a = ¢qg + r as claimed. The uniqueness is
proved as in Theorem 1.1.

1.2 Divisibility

10.

11.

12.

a) 8 (d) 11. (g) 592.
(b) (e) 9. (h) 6
¢) 1 (f) 17

If b| athen a = bz for some integer z. Then a = (—b)(—x) so that (-b) | a. The converse follows
similarly.

Answered in the text.

(a) Given b = az and ¢ = ay for some integers z, y, we find b + ¢ = az + ay = a(z + y).
Since = + y is an integer, conclude that a | (b + ¢).

(b) Given z and y as above we find br + ¢t = (azx)r + (ay)t = a(ar + yt) using the associative
and distributive laws. Since zr + yt is an integer we conclude that a | (br + ct).

Since a | b, we have b = ak for some integer k, and a # 0. Since b | a, we have a = bl for some
integer I, and b # 0. Thus a = bl = (ak)l = a(kl). Since a # 0, divide through by a to get 1 = kl.
But this means that k = +1 and [ = +1, so that a = £+ b.

Given b = az and d = cy for some integers z, y, we have bd = (ax)(cy) = (ac)(ay). Then ac | bd
because zy is an integer.

Clearly (a,0) is at most |a| since no integer larger than |a| divides a. But also |a| | a, and |a| | O
since any nonzero integer divides 0. Hence |a| is the ged of a and 0.

If d=(n,n+ 1) then d| nand d| (n+ 1). Since (n + 1) — n = 1 we conclude that d | 1. (Apply
Exercise 4(b).) This implies d = 1, since d > 0.

No, ab need not divide ¢. For one example, note that 4 | 12 and 6 | 12, but 4 - 6 = 24 does not
divide 12.

Since a | a and a | 0 we have a | (a, 0). If (a, 0) = 1 then a | 1 forcing a = +1.

(a) Lor2 (b) 1, 2, 3 or 6. Generally if d = (n, n+ ¢) then d | nand d | (n + ¢).

Since ¢ is a linear combination of n and n+c, conclude that d | c.

(a) False. (ab,a) is always at least a since a | ab and a | a.
(b) False. For example, (2,3) =1 and (2,9) = 1, but (3,9) = 3.
(c¢) False. For example, let a =2, b =3, and ¢=9. Then (2,3) =1=(2,9), but (2-3,9) = 3.
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1.2 Divisibility 3

13.

14.

15.

16.

17.

18.

19.

(a) Suppose ¢ | @ and ¢ | b. Write a = ¢k and b = ¢l. Then a = bg + r can be rewritten
ck = (cl)g + r, so that r = ck — clg = c¢(k — lg). Thus ¢ | r as well, so that ¢ is a common
divisor of b and r.

(b) Suppose ¢ | b and ¢ | r. Write b = ck and r = ¢l, and substitute into a = bg + r to get
a = ckq+ cl = c(kq+1). Thus ¢ | a, so that ¢ is a common divisor of a and b.

(c) Since (a,b) is a common divisor of a and b, it is also a common divisor of b and r, by part (a).
If (a,b) is not the greatest common divisor (b,r) of b and r, then (a,b) > (b,r). Now, consider
(b,r). By part (b), this is also a common divisor of (a,b), but it is less than (a,b). This is a
contradiction. Thus (a,b) = (b,r).

By Theorem 1.3, the smallest positive integer in the set S of all linear combinations of a and b is

exactly (a, b).
(a) (6,15) = 3 (b) (12, 17)=1.

(a) This is a calculation.

(b) At the first step, for example, by Exercise 13 we have (a,b) = (524, 148) = (148,80) = (b,r).
The same applies at each of the remaining steps. So at the final step, we have (8,4) = (4, 0);
putting this string of equalities together gives

(524, 148) = (148,80) = (80, 68) = (68,12) = (12,8) = (8,4) = (4,0).

But by Example 4, (4,0) = 4, so that (524, 148) = 4.
(¢) 1003 =56-17+51,56=51-1+5,51=5-10+1,5=1-5+0. Thus (1003,56) = (1,0) = 1.

(d) 322 = 148 -2+ 26, 148 = 26-5+ 18,26 = 18- 1 +8, 18 = 8-2+2, 8 = 2.4 4 0, so that
(322,148) = (2,0) = 2.

(e) 5858 = 1436 -4 + 114, 1436 = 114 - 12+ 68, 114 = 68 - 1 + 46, 68 = 46 - 1 + 22, 46 = 222 + 2,
22 =211+ 0, so that (5858, 1436) = (2, 0) = 2.

f) 68 =148 — (524 — 148 - 3) = —524 4 148 - 4.

(g) 12=80—-68-1=(524—148-3) — (—524 + 148 -4)-1=1524-2 — 148 - 7.

(h) 8=68—12-5=(—-524+148-4) — (524-2— 148 -7) -5 = —524 - 11 + 148 - 39.

(i) 4=12—-8=(524-2—148-7) — (—524 - 11 4+ 148 - 39) = 524 - 13 — 148 - 46.

(j) Working the computation backwards gives 1 = 1003 - 11 — 56 - 197.

Let a = da, and b = db,. Then a, and b, are integers and we are to prove: (a;, b;) = 1. By
Theorem 1.3 there exist integers u, v such that au + bv = d. Substituting and cancelling we find

that a,u + b,v = 1. Therefore any common divisor of @, and b, must also divide this linear
combination, so it divides 1. Hence (qa,, b)) = 1.

—~

Since b | ¢, we know that ¢ = bt for some integer ¢. Thus a | ¢ means that a | bt. But then Theorem
1.4 tells us, since (a,b) = 1, that a | t. Multiplying both sides by b gives ab | bt = c.

Let d = (a, b) so there exist integers x, y with az + by = d. Note that ed | (ca, ¢b) since cd
divides ca and c¢b. Also c¢d = cax + cby so that (ca, ¢b) | cd. Since these quantities are positive we
get cd = (ca, cd).

Let d = (a, b). Since b + ¢ = aw for some integer w, we know c¢ is a linear combination of a and b
so that d |c. But then d | (b,c) = 1 forcing d = 1. Similarly (a,c) = 1.
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20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

Let d = (a, b) and e = (a, b + at). Since b + at is a linear combination of a and b, d | (b + at) so
that d | e. Similarly since b = a(—t) + (b + at) is a linear combination of a and b 4+ at we know e
| b so that e | d. Therefore d = e.

Answered in the text.

Let d = (a, b, ¢). Claim: (a, d) = 1. [Proof: (a, d) divides d so it also divides c¢. Then (a, d) | (a, ¢)
= 1 so that (a, d)= 1.] Similarly (b, d)= 1. But d | ab and (a, d) = 1 so that Theorem 1.5 implies
that d | b. Therefore d = (b. d) = 1.

Define the powers b" recursively as follows: b' = b and for every n =1, 0" "' =b- b
hypothesis (a, b') = 1. Given k > 1, assume that (a, v*) = 1. Then (a, b*"') = (a, b - b*) = 1 by
Exercise 24. This proves that (a, ") = 1 for every n > 1.

Let d = (a, b). If ax 4+ by = c for some integers z, y then c is a linear combination of a and b so
that d | ¢. Conversely suppose ¢ is given with d | ¢, say ¢ = dw for an integer w. By Theorem 1.3
there exist integers u, v with d = au + bv. Then ¢ = dw = auw + bvw and we use x = uw and

Yy = vw to solve the equation.

(a) Given au + bv = 1 suppose d = (a, b). Then d | a and d | b so that d divides the linear
combination au + bv = 1. Therefore d = 1.

(b) There are many examples. For instance if a = b = d = uw = v =1 then (a, b) = (1, 1)=1
while d=au+ bv=1+4+1=2.

Let d = (a, b) and express a = da, and b = db, for integers a,, b,. By Exercise 16, (a,, b,) = 1.
Since a | ¢ we have ¢ = au = da,u for some integer u. Similarly ¢ = bv = db,v for some integer v.
Then a,u = ¢/d = b,V and Theorem 1.5 implies that a, | v so that v = a,w for some integer w.
Then ¢ = da,byw so that ¢d = d®a;byw = abw and ab | cd.

Answered in the text.

Suppose the integer consists of the digits a,a,—1...a1ag. Then the number is equal to

zn: ap10F = Zn:ak(lok -1+ zn: .
k=0 k=0 k=0

Now, the first term consists of terms with factors of the form 10¥ — 1, all of which are of the form
999...99, which are divisible by 3, so that the first term is always divisible by 3. Thus ZZ:O a,10F
is divisible by 3 if and only if the second term Y _;'_ ay is divisible by 3. But this is the sum of the
digits.

This is almost identical to Exercise 28. Suppose the integer consists of the digits ana,_1 . ..a1ao.
Then the number is equal to

zn:aklok = zn:ak(lok —1)+ zn:ak.
k=0 k=0

k=0

Now, the first term consists of terms with factors of the form 10¥ — 1, all of which are of the form
999...99, which are divisible by 9, so that the first term is always divisible by 9. Thus >, _, a 10"
is divisible by 9 if and only if the second term ZZZO ay, is divisible by 9. But this is the sum of the
digits.
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1.2 Divisibility

30. Let S={ayz + a1, + * + a,2, : T B, ..., T are integers}. As in the proof of Theorem 1.3, S
does contain some positive elements (for if a;# 0 then a” € S is positive). By the Well Ordering
Axiom this set S contains a smallest positive element, which we call ¢. Suppose t = a,u; + au, +
- 4+ a,u, for some integers wu;.

Claim. ¢t = d. The first step is to show that ¢ | a. By the division algorithm there exist integers ¢
and rsuch that ¢, = t¢ + rwith 0 < r < ¢. Then r = q;, — t¢ = a,(1 — w,q9) + a&(~wgq) + - +
a,(—u,q) is an element of S. Since r < ¢ (the smallest positive element of S), we know r is not
positive. Since 2 0 the only possibility is 7 = 0. Therefore a, = tq and ¢ | a,. Similarly we have
t| a; for each j, and tis a common divisor of a,, a,,"*, a,. Then t < d by definition.

On the other hand d divides each a, so d divides every integer linear combination of a;, a,,, a,.
In particular, d | ¢. Since ¢ > 0 this implies that d < t and therefore d = t.

31. (a) [6,10] = 30; [4,5,6,10] = 60; [20,42] = 420, and [2, 3,14, 36, 42] = 252.

(b) Suppose a; |t for i = 1,2,...,k, and let m = [aj,as,...,a;]. Then we can write t = mq+r
with 0 < 7 < m. For each 4, a; | t by assumption, anda; | m since m is a common multiple
of the a; Thus a; | (t — mg) = r. Since a; | r for each i, we see that r is a common multiple
of the a;. But m is the smallest positive integer that is a common multiple of the a;; since
0 < r < m, the only possibility is that » = 0 so that ¢t = mgq. Thus any common multiple of
the a; is a multiple of the least common multiple.

32. First suppose that ¢ = [a,b]. Then by definition of the least common multiple, ¢ is a multiple of
both a and b, so that ¢t | a and ¢ | b. If a | ¢ and b | ¢, then ¢ is also a common multiple of @ and b,
so by Exercise 31, it is a multiple of ¢ so that ¢ | c.

Conversely, suppose that ¢ satisfies the conditions (i) and (ii). Then since a | ¢ and b | ¢, we see that
t is a common multiple of a and b. Choose any other common multiple ¢, so that a | ¢ and b | c.

Then by condition (ii), we have ¢ | ¢, so that ¢t < c. It follows that ¢ is the least common multiple
of a and b.

33. Let d = (a,b), and writea = da; and b = db;. Write m = %b = ””‘“7;”’1 = da1by. Since a and b are
both positive, so is m, and since m = da1by = (da1)by = aby and m = da1by = (db1)a; = bay, we
see that m is a common multiple of a and b. Suppose now that & is a positive integer with a | k
and b | k. Then k = au = bv, so that k = daju = dbyv. Thus % = aju = byv. By Exercise 16,
(a1,b1) = 1, so that ay | v, say v = ayw. Then k = dbjv = dbjajw = mw, so that m | k. Thus

m < k. It follows that m is the least common multiple. But by construction, m = (gl;) = %b.

34. (a) Let d = (a,b). Since d | a and d | b, it follows that d | (a + b) and d | (a — b), so that d is a
common divisor of @ + b and a — b. Hence it is a divisor of the greatest common divisor, so
that d = (a,b) | (a+b,a —b).
(b) We already know that (a,b) | (a+b,a—b). Now suppose that d = (a+b,a—b). Then a+b = dt
and a — b = du, so that 2a = d(t + u). Since a is even and b is odd, d must be odd. Since
d | 2a, it follows that d | a. Similarly, 2b = d(t — u), so by the same argument, d | b. Thus d is
a common divisor of a and b, so that d | (a,b). Thus (a,b) = (a + b,a — b).

(¢) Suppose that d = (a +b,a —b). Then a + b = dt and a — b = du, so that 2a = d(t + u). Since
a and b are both odd, a + b and a — b are both even, so thatd is even. Thus a = g(t +u), so

that ¢ | a. Similarly, ¢ | b, so that ¢ = 2020 | (4 ) | (a+b,a—b). Thus (a,b) = @t2a=t)

or (a,b) = (a + b,a — b). But since (a,b) is odd and (a + b,a — b) is even, we must have
%ﬁ = (a,b), or 2(a,b) = (a +b,a —b).
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1.3 Primes and Unique Factorization

10.

(a) 24-32.5-7. (c) 2-5-4567.
(b) —=5-7-67. (d) 23-3.5.7-11-13-17.

(a) Since 2° — 1 = 31, and v/31 < 6, we need only check divisibility by the primes 2, 3, and 5.
Since none of those divides 31, it is prime.

(b) Since 27 — 1 = 127, and /127 < 12, we need only check divisibility by the primes 2, 3, 5, 7,
and 11. Since none of those divides 127, it is prime.

(c) 2'1 — 1 =2047 = 23 - 89.

. They are all prime.
. The pairs are {3,5}, {5,7}, {11,13}, {17,19}, {29,31}, {41,43}, {59,61}, {71,73}, {101,103},

{107,109}, {137,139}, {149,151}, {179,181}, {191,193}, {197,199}

(a) Answered in the text. These divisors can be listed as 23 for 0 < j< sand 0 < k< ¢
(b) The number of divisors equals (r 4+ 1)(s + 1)(¢ + 1).

The possible remainders on dividing a number by 10 are 0,1,2,...,9. If the remainder on dividing
p by 10 s 0,2,4,6, or 8, then p is even; since p > 2, p is divisible by 2 in addition to 1 and itself
and cannot be prime. If the remainder is 5, then since p > 5, p is divisible by 5 in addition to 1
and itself and cannot be prime. That leaves as possible remainders only 1,3,7, and 9.

Since p | (a 4+ be) and p | a, we have a = pk and a + be = pl, so that pk + be = pl and thus
bc = p(l — k). Thus p | be. By Theorem 1.5, either p | b or p | ¢ (or both).

(a) As polynomials,
2" —1=(z— D" +2" 2+ f241).

(b) Since 22" -3" —1 = (22.3)" — 1 = 12" — 1, by part (a), 12" — 1 is divisible by 12 — 1 = 11.

If pis a prime and p = rs then by the definition r, s must lie in {1, -1, p, —p}. Then either r = +1
or r=+4pand s = p/r = +1, Conversely if p is not a prime then it has a divisor r not in {1, -1,
p, —p}. Then p = rs for some integer s. If s equals +1 or +p then r = p/s would equal +p or +1,
contrary to assumption. This r, s provides an example where the given statement fails.

Assume first that p > 0. If p is a prime then (a, p) is a positive divisor of p, so that (a, p) = 1 or
p. If (a, p) = p then p | a. Conversely if p is not a prime it has a divisor d other than +1 and +p.
We may change signs to assume d > 0. Then (p, d) = d # 1. Also p | d since otherwise p | d and
d = p implies d = p. Then a = d provides an example where the required statement fails. Finally
if p < 0 apply the argument above to —p.
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1.3 Primes and Unique Factorization 7

11.

12.

13.

14.

15.

16.

17.

18.

19.

Since p|a—bandp|c—d,alsop|(a—b)+(¢c—d) =(a+c)— (b+d). Thus p is a divisor of
(a+¢) — (b+ d); the fact that p is prime means that it is a prime divisor.

Since n > 1 Theorem 1.10 implies that n equals a product of primes. We can pull out minus signs
to see that n = p, p, ... p, where each p, is a positive prime. Re-ordering these primes if necessary,
to assume p; < p, < ... < p,. For the uniqueness, suppose there is another factorization n = ¢, ¢,...q,
for some positive primes ¢; with ¢, < ¢, ... < ¢.. By theorem 1.11 we know that r = s and the p,’s
are just a re-arrangement of the ¢;s. Then p, is the smallest of the p,’s, so it also equals the
smallest of the ¢’s and therefore p, = ¢,. We can argue similarly that p, = ¢,, ..., p, = ¢,. (This
last step should really be done by a formal proof invoking the Well Ordering Axiom.)

By Theorem 1.8, the Fundamental Theorem of Arithmetic, every integer except 0 and +1 can be
written as a product of primes, and the representation is unique up to order and the signs of the
primes. Since in our case n > 1 is positive and we wish to use positive primes, the representation
is unique up to order. So write n = ¢1 q2 ... qs where each ¢; > 0 is prime. Let p1,po,...,p, be the
distinct primes in the list. Collect together all the occurrences of each p;, giving r; copies of p;,

ie plt.

Suppose d | p so that p = dt for some integer ¢. The hypothesis then implies that p | dor p | ¢. If
p | d then (applying Exercise 1.2.5) d = +p. Similarly if p | ¢ then, since we know that ¢ | p, we
get t = +p, and therefore d = +1.

Apply Corollary 1.9 in the case a, =a, = - = a, to see that if p | a” then p | a. Then a = pu for
some integer u, so that o" = p™u" and p" | a".

Generally, p | aand p | bif and only if p | (a, b), as in Corollary 1.4. Then the Exercise is
equivalent to: (a, b) = 1 if and only if there is no prime p such that p | (a, b). This follows using
Theorem 1.10.

First suppose u, v are integers with (u, v) = 1. Claim. (v?, v*) = 1. For suppose p is a prime
such that p | v> and p | v*. Then p | uw and p | v (using Theorem 1.8), contrary to the hypothesis
(u, v) = 1. Then no such prime exists and the Claim follows by Exercise 8.

Given (a, b) = p write a = pa, and b = pb,. Then (a;, b;) = 1 by Exercise 1.2.16. Then (d?, v*) =
(P’a®, p*b) = p*(a%, b%), using Exercise 1.2.18. By the Claim we conclude that (a’, b°) = p*.

The choices p = 2, a = b =0, ¢ = d = 1 provide a counterexample to (a) and (b).
(c) Since p | (a® + b°) — aa = V?, conclude that p | b by Theorem 1.8.

If r; < s; for every i, then

— mS1 52 Sk _ 1,817 T1 72, S2—T2 Tk Sk~ Tk __ 71,72 Tk S1—7T1,,82—T2 S§2—Tk

b=pi'py* . pt =i’ PR’y <Dy Py = (pI'p5? ... pp") - (p7 s CpETTE)
_ $1—71,.82—T2 52 —Tk
=a- (p}* "p5 PR

Since each s; —r; > 0, the second factor above is an integer, so that a | b.

Now suppose a | b, and consider p;’. Since this is composed of factors only of p;, it must divide p;*,
since p; { p; for i # j. Thus p;* | p;*. Clearly this holds if r; < s;, and also clearly it does not hold
if r; > s;, since then p;* > p;'.
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20.

21.

22.

23.

24.

25.

26.

27.

(a) The positive divisors of a are the numbers d = p,™ p,"*** p,"* where the exponents m;
satisfy 0 < m, < r, for each j =1, 2,,.., k. This follows from unique factorization. If d also
divides b we have 0 < m, < s; for each i = 1, 2,... k. Since n; = min{r;, s} we see that the
positive common divisors of a and b are exactly those numbers d = p,"'p," -+ p,"* where
0 < m,; < n,for each j=1, 2,..., k. Then (a, b) is the largest among these common
divisors, so it equals p,"™p," - p,".

(b) For [a, b] a similar argument can be given, or we can apply Exercise 1.2.31, noting that

max{r, s} = r + s — min{r, s} for any positive numbers r, s.

Answered in the text.

If every r; is even it is easy to see that n is a perfect square. Conversely suppose 7 is a square.
First consider the special case n = p” is a power of a prime. If p” = m? is a square, consider the
prime factorization of m. By the uniqueness (Theorem 1.11), p is the only prime that can occur,
so m = p* for some s, and p"= m? = p*. Then r = 2s’is even. Now for the general case, suppose
n = m’ is a perfect square. If some r; is odd, express n = p,” - k where k is the product of the
other primes involved in n.

Then p,” and k are relatively prime and Exercise 13 implies that p,” is a perfect square. By the
special case, r;. is even.

Suppose a = p'py? ... pF and b = pi'ps? ... p;* where the p; are distinct positive primes and r; > 0,
5; > 0. Then a® = pI"'p3™ .. .pir’“ and b% = p7*1p3*2 ...pisk. Then using Exercise 19 (twice), we
have a | b if and only if 7; < s; for each i if and only if 2r; < 2s; for each i if and only if a? | b°.

This is almost identical to the previous exercise. If n > 0 is an integer, suppose a = pi'py? ... p,*
and b = pi'p5?...p;* where the p; are distinct positive primes and r; > 0, s; > 0. Then a" =
piTipsT L pp™ and b2 = p*ipy*? ... pp°*. Then using Exercise 19 (twice), we have a | b if and
only if r; < s; for each i if and only if nr; < ns; for each ¢ if and only if a™ | b".

The binomial coefficient (Z) is

(p): Pt _pp=1---(p-k+1)
k) El(p—k) k(k—1)---1 ‘

Now, the numerator is clearly divisible by p. The denominator, however, consists of a product of
integers all of which are less than p. Since p is prime, none of those integers (except 1) divide p,
so the product cannot have a factor of p (to make this more precise, you may wish to write the
denominator as a product of primes and note that p cannot appear in the list).

Claim: Each A, = (n 4+ 1)! + k is composite, for k= 2, 3,. .. , n + 1. Proof. Since k< n + 1 we
have k| (n + 1)! and therefore k| A,. Then 4, is composite since I < k < A,.

By the division algorithm p = 6k + r where 0 £ r < 6. Since p > 3 is prime it is not divisible by 2
or 3, and we must have r= 1 or 5. If p = 6k + 1 then p* = 36K + 12k + 1 and p* + 2 = 36K +
12k + 3 is a multiple of 3. Similarly if p = 6k + 5 then p* +2 = 36, + 60k + 27 is a multiple of
3. So in each case, p* + 2 is composite.
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1.3 Primes and Unique Factorization 9

28. The sums in question are: 1 + 2 + 4 + -+ + 2". When n = 7 the sum is 255 = 3-5:17 and when
n = 8 the sum is 511 = 7-73. Therefore the assertion is false. The interested reader can verify that
this sum equals 2" — 1. These numbers are related to the “Mersenne primes”.

29. This assertion follows immediately from the Fundamental Theorem 1.11.

30. (a) If o> = 21? for positive integers a, b, compare the prime factorizations on both sides. The
power of 2 occurring in the factorization of @ must be even (since it is a square). The power
of 2 occurring in 2b* must be odd. By the uniqueness of factorizations (The Fundamental
Theorem) these powers of 2 must be equal, a contradiction.

(b) If /2 is rational it can be expressed as a fraction + for some positive integers a, b.
Clearing denominators and squaring leads to: o> = 2b°, and part (a) applies.

31. The argument in Exercise 20 applies. More generally see Exercise 27 below.

32. Suppose all the primes can be put in a finite list p,, p,," -, p, and consider N = p, p, ...p, + 1. None
of these p; can divide N (since 1 can be expressed as a linear combination of p;, and N). But N > 1
so N must have some prime factor p. (Theorem 1.10). This p is a prime number not equal to any
of the primes in our list, contrary to hypothesis.

33. Suppose n is composite, and write n = rs where 1 < r,; s < n. Then, as you can see by multiplying
it out,

om_ 1= (27“ _ 1) (23(7"—1) + 23(7"—2) + 23(7“—3) 4ot 98 + 1) )

Since r > 1, it follows that 2" > 1. Since s > 1, we see that 2° + 1 > 1, so that the second factor
must also be greater than 1. So 2™ — 1 has been written as the product of two integers greater than
one, so it cannot be prime.

34. Proof: Since n > 2 we know that n! — 1 > 1 so it has some prime factor p. If p < n then p | n!,
contrary to the fact that p | nl. Therefore n < p < nl.

35. We sketch the proof (b). Suppose a > 0 (What if a < 0?), 7" = a and 7 = u/v where u, v are
integers and v > 0. Then u" = av". If p is a prime let & be the exponent of p occurring in a (that
. k k+1 : : n 3 mn 3
is: p| aand p I a ). The exponents of p occurring in " and in v" must be multiples of n, so
unique factorization implies k is a multiple of n. Putting all the primes together we conclude that
a = b" for some integer b.

36. If pis a prime > 3 then 2| p and 3] p, so by Exercise 1.2.34 we know 24 | p* — 1. Similarly 24 |
(¢ — 1) so that p> — ¢ = (p* — 1) — (¢ — 1) is a multiple of 24.
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Chapter 2

Congruence in Z and Modular
Arithmetic

2.1 Congruence and Congruence Classes

1. (a)2°1=2'=16=1 (mod 5). (b) 47! = 4° = 4096 = 1 (mod 7).
(¢) 3" = 3= 59049 = 1 (mod 11).

2. (a)Use Theorems 2.1 and 2.2: 6k + 5=6.1 + 5 =11 =3 (mod 4).
(b)2r + 3s=2.3 + 3.(-7) =-15 =5 (mod 10).

3. (a) Computing the checksum gives
10-34+9-5+8-44+7-04+6-94+5-0+4-5+3-1+2-8+1-9
=304+45+32+4+54+20+ 3+ 16 + 9 = 209.
Since 209 = 1119, we see that 209 = 0 (mod 11), so that this could be a valid ISBN number.
(b) Computing the checksum gives
10-0+9-0+8-3+7-14+6-14+5-0+4-5+3-5+2-9+1-5
=24+74+6+20+ 15+ 1845 = 95.

Since 95 = 11 -8 + 7, we see that 95 = 7 (mod 11), so that this could not be a valid ISBN
number.

(¢) Computing the checksum gives

10-0+9-3+8-84+7-5+6-4+5-9+4-5+3-9+2-6+1-10
=27+64+35+24+45+ 20+ 27+ 12 + 10 = 264.

Since 264 = 1124, we see that 264 = 0 (mod 11), so that this could be a valid ISBN number.
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