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Therefore,

fW,Z(α, β) =
fX,Y (u.v)

det J
=

{
exp(−λ(2

√
β−α−α))√

β−α β > α+ (max{0, α})2

0 else

1.35 Conditional densities and expectations

(a)

E[XY ] =

∫ 1

0

∫ u

0

uv(4u2)dvdu

=

∫ 1

0

4u3

(∫ u

0

vdv

)
du

=

∫ 1

0

2u5du =
1

3
.

(b)

fY (v) =

∫ 1

v

4u2 du =

{
4
3 (1− v3), 0 ≤ v ≤ 1

0, elsewhere

(c)

fX|Y (u|v) =





0, 0 < v < 1, 0 < u < v

4u2

4
3 (1−v3)

= 3u2

1−v3 , 0 < v < 1, v < u < 1

undefined, v < 0 or v > 1

(d) For 0 < v < 1, E[X2|Y = v] =
∫ 1

v
u2 3u2

1−v3 du = 3
5

1−v5
1−v3

2.1 Limits and infinite sums for deterministic sequences (a) Before beginning

the proof we observe that | cos(θ)| ≤ 1, so |θ(1 + cos(θ))| ≤ 2|θ|. Now, for the

proof. Given an arbitrary ε with ε > 0, let δ = ε/2. For any θ with |θ − 0| ≤ δ,

the following holds: |θ(1 + cos(θ))− 0| ≤ 2|θ| ≤ 2δ = ε. Since ε was arbitrary the

convergence is proved.

(b) Before beginning the proof we observe that if 0 < θ < π/2, then cos(θ) ≥ 0

and 1+cos(θ)
θ ≥ 1/θ. Now, for the proof. Given an arbitrary positive number K,

let δ = min{π2 , 1
K }. For any θ with 0 < θ < δ, the following holds: 1+cos(θ)

θ ≥
1/θ ≥ 1/δ ≥ K. Since K was arbitrary the convergence is proved.

(c) The sum is by definition equal to limN→∞ sN where sN =
∑N
n=1

1+
√
n

1+n2 . The

sequence SN is increasing in N . Note that the n = 1 term of the sum is 1 and

for any n ≥ 1 the nth term of the sum can be bounded as follows:

1 +
√
n

1 + n2
≤ 2
√
n

n2
= 2n−3/2.

Therefore, comparing the partial sum with an integral, yields

sN ≤ 1 +
N∑

n=2

2n−3/2 ≤ 1 +

∫ N

1

2x−3/2dx = 5− 4N−1/2 ≤ 5.
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In summary, the sequence (SN : N ≥ 1) is an increasing, bounded sequence, and

it thus has a finite limit.

2.3 The reciprocal of the limit is the limit of the reciprocal Let ε > 0. Let

ε′ = min{ |x∞|2 ,
εx2
∞

2 }. By the hypothesis, there exists a value of no so large that

for all n ≥ no, |xn−x∞| ≤ ε′. This condition implies that |xn| ≥ |x∞|/2, because

of the choice of ε′. Therefore, for all n ≥ no,

∣∣∣∣
1

xn
− 1

x∞

∣∣∣∣ =
|xn − x∞|
|xn||x∞|

≤ 2ε′

x2∞
≤ ε,

which, by definition, shows that (1/xn) converges to 1/x∞.

2.5 On convergence of deterministic sequences and functions (a) Note that

xn − 8
3 = 1

3n . Thus, given any ε > 0, let nε = d 1
3εe. Then for any n ≥ nε,

|Xn − 8
3 | ≤ 1

3n ≤ 1
3nε
≤ ε. Thus, by definition, limn→∞ xn = 8

3 .

(b) Let ε = 1/3 and let xn = (2/3)1/n for n ≥ 1. Note that xn ∈ [0, 1) and

fn(xn) = 2
3 . Thus, there is no positive integer n such that |fn(x)− 0| ≤ ε for all

x ∈ [0, 1). So it is impossible to select nε with the property required for uniform

convergence. Therefore fn does not converge uniformly to zero.

(c) Let c < supD f . Then there is an x ∈ D so that c ≤ f(x). Therefore,

c ≤ f(x) − g(x) + g(x) ≤ supD |f − g| + supD g. Thus, c < supD f implies

c < supD |f − g| + supD g. Equivalently, supD f ≤ supD |f − g| + supD g, or

supD f − supD g ≤ supD |f − g|. Exchanging the roles of f and g yields supD g−
supD f ≤ supD |f − g|. Combining yields the desired inequality, | supD f −
supD g| ≤ supD |f−g|. As an application, suppose fn → f uniformly on D. Then

given any ε > 0, there exists an nε so large, that supD |fn−f | ≤ ε, whenever n ≥
nε. But then by the inequality proved, | supD fn − supD f | ≤ supD |fn − f | ≤ ε,

whenever n ≥ nε. Thus, by definition, supD fn → supD f as n→∞.

2.7 On the Dirichlet criterion for convergence of a series

(a) Let Rn =
∑n
k=0 ak. By assumption, the sequence (Rn) has a finite limit, so

it is a Cauchy sequence, i.e. limm,n→∞ |Rm −Rn| = 0. Now for n < m,

|Sm − Sn| = |
∑m
k=n+1 dk| ≤

∑m
k=n+1 |dk| ≤

∑m
k=n+1 Lak = L|Rm −Rn|. There-

fore,

limm,n→∞ |Sm − Sn| = 0. That is, (Sn) is also a Cauchy sequence, and hence

also has a finite limit.
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(b)

Sn =
n∑

k=0

AkBk −
n∑

k=1

AkBk−1 since B−1 = 0

=
n∑

k=0

AkBk −
n−1∑

k=0

Ak+1Bk

=

(
n∑

k=0

(Ak −Ak+1)Bk

)
−An+1Bn

=

(
n∑

k=0

akBk

)
−An+1Bn.

(c) Since |akBk| ≤ Lak for all k, the sequence of sums
∑n
k=0 akBk is convergent

by the result of part (a). Also, |An+1Bn| ≤ LAn+1 → 0 as n → ∞. Thus, by

part (b), Sn has a finite limit.

2.9 Convergence of a random sequence (a) The sequence Xn(ω) is monotone

nondecreasing in n for each ω. Also, by induction on n, Xn(ω) ≤ 1 for all n and

ω. Since bounded monotone sequences have finite limits, limn→∞Xn exists in

the a.s. sense and the limit is less than or equal to one with probability one.

(b) Since a.s. convergence of bounded sequences implies m..s. convergence,

limn→∞Xn also exists in the m.s. sense.

(c) Since (Xn) converges a.s., it also converges in probability to the same ran-

dom variable, so Z = limn→∞Xn a.s. It can be shown that P{Z = 1} = 1.

Here is one of several proofs. Let 0 < ε < 1. Let a0 = 0 and ak = ak−1+1−ε
2 for

k ≥ 1. By induction, ak = (1 − ε)(1 − 2−k). Consider the sequence of events:

{Ui ≥ 1− ε} for i ≥ 1. These events are independent and each has probability ε.

So with probability one, for any k ≥ 1, the probability that at least k of these

events happens is one. If at least k of these events happen, then Z ≥ ak. So,

P{(1− ε)(1− 2−k) ≤ Z ≤ 1} = 1. Since ε can be arbitrarily close to zero and k

can be arbitrarily large, it follows that P{Z = 1} = 1.

ANOTHER APPROACH is to calculate that E[Xn|Xn−1 = v] = v + (1−v)2

2 .

Thus, E[Xn] = E[Xn−1]+E[(1−Xn−1)2]
2 ≥ E[Xn−1]+ (1−E[Xn−1])2

2 . Since E[Xn]→
E[Z], it follows that E[Z] ≥ E[Z] + (1−E[Z])2

2 . So E[Z] = 1. In view of the fact

P{Z ≤ 1} = 1, it follows that P{Z = 1} = 1.

2.11 Convergence of some sequences of random variables (a)For each fixed

ω., V (ω)
n → 0 so Xn(ω) → 1. Thus, Xn → 1 in the a.s sense, and hence also

in the p. and d. senses. Since the random variables Xn are uniformly bounded

(specifically, |Xn| ≤ 1 for all n), the convergence in p. sense implies convergence

in m.s. sense as well. So Xn → 1 in all four senses.

(b)To begin we note that P{V ≥ 0} = 1 with P{V > 1} = e−3 > 0. For

any ω such that V (ω) < 1, Yn(ω) → 0, and for any ω such that V (ω) > 1,

Yn(ω) → +∞, so (Yn) does not converge in the a.s. sense to a finite random

variable.
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Let us show Yn does not converge in d. sense. For any c > 0 limn→∞ Fn(c) =

limn→∞ P{Yn ≤ c} = P{V < 1} = 1 − e−3. The limit exists but the limit

function F satisfies F (c) = e−1 for all c > 0, so the limit is not a valid CDF.

Thus, (Yn) does not converge in the d. sense (to a finite limit random variable),

and hence does not converge in any of the four senses to a finite limit random

variable.

(c)For each ω fixed, Zn(ω)→ eV (ω). So Zn → eV in the a.s. sense, and hence also

in the p. and d. senses. Using the inequality 1+u ≤ eu shows that Zn ≤ eV for all

n so that |Zn| ≤ eV for all n. Note that E[(eV )2] = E[e2V ] =
∫∞

0
e2u3e−3udu =

3 < ∞. Therefore, the sequence (Zn) is dominated by a single random variable

with finite second moment (namely, eV ), so the convergence of (Zn) in the p.

sense to eV implies that (Zn) converges to eV in the m.s. sense as well. So

Zn → eV in all four senses.

2.13 On the maximum of a random walk with negative drift (a) By the

strong law of large numbers, P{Sn/n → −1} = 1. Therefore, with probability

one, Sn/n ≤ 0 for all sufficiently large n. That is, with probability one, Sn > 0

only finitely many times. The random variable Z, with probability one, is thus

the maximum of only finitely many nonnegative numbers. So Z is finite with

probability one.

(b) Suppose P{X1 = c − 1} = P{X1 = −c − 1} = 0.5 for a constant c > 0.

Then X1 has mean -1 as required. Following the hint, for c ≥ 1, we have E[Z] ≥
E[max{0, X1}] = (c− 1)/2. Observe that E[Z] can be made arbitrarily large by

taking c arbitrarily large. So the answer to the question is no. (Note: More can

be said about E[Z] if the variance of X1 is known. A celebrated bound of J.F.C.

Kingman is that E[Z] ≤ Var(X1)
−2E[X1] .)

2.15 Convergence in distribution to a nonrandom limit Suppose P{X = c} =

1 and limn→∞Xn = X d. Let ε > 0. It suffices to prove that

P{Xn − X| ≤ ε} → 1 as n → ∞. Note that P{|Xn − X| ≤ ε} ≥ P{c − ε <
Xn ≤ c + ε} = Fn(c + ε) − Fn(c − ε). Since c − ε is a continuity point of FX
and FX(c− ε) = 0, it follows that Fn(c− ε)→ 0. Similarly, Fn(c+ ε)→ 1. Thus

Fn(c+ ε)−Fn(c− ε)→ 1, so that P{|Xn−X| ≤ ε} → 1. Therefore convergence

in probability holds.

Note: A slightly different approach would be to prove that for any ε > 0, there

is an nε so large that P{|Xn − c| ≤ ε} ≥ 1− ε.
2.17 Convergence of a product (a) Examine Sn = lnXn. The sequence Sn, n ≥
1 is the sequence of partial sums of the independent and identically distributed

random variables lnUk. Observe that E[lnUk] =
∫ 2

0
ln(u) 1

2du = 1
2 (x lnx−x)|20 =

ln 2− 1 ≈ −0.306. Therefore, by the strong law of large numbers, limn→∞
Sn
n =

ln 2 − 1 a.s. This means that, given an ε > 0, there is an a.s. finite random

variable Nε so large that |Snn − (ln 2− 1)| ≤ ε for all n ≥ Nε. Equivalently,
(

2(1− ε)
e

)n
≤ Xn ≤

(
2(1 + ε)

e

)n
for n ≥ Nε.

Conclude that limn→∞Xn = 0 a.s., which implies that also limn→∞Xn = 0 p.
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and limn→∞Xn = 0 d. It remains to check for convergence in the m.s. sense. If

Xn were to converge in the m.s. sense, it would have to converge to the same

random variable in probability. But Xn does not converge to zero in the mean

square. One way to see that Xn does not converge to zero in the m.s. sense is to

note that E[Xn] = 1 for all n, so limn→∞E[Xn] 6= 0. Another way to see that

Xn does not converge to zero in the m.s. sense is to observe

E[|Xn − 0|2] = E[U2
1 . . . U

2
n] = E[U2

1 ] · · ·E[U2
n] =

(
4

3

)n
6→ 0.

In summary, Xn converges to zero in the a.s., p., and d. senses, but does not

converge in the m.s. sense.

(b) As noted in part (a), limn→∞
Sn
n = ln 2− 1 a.s., so if θ = −1, then Yn = Sn

n

converges in distribution to the constant ln 2− 1.

2.19 Sums of i.i.d. random variables, I Let Xi denote the gamblers net gain

for the ith play. Then X1, X2, . . . , X100 are iid with

pXi(x) =





0.5 x = −1

0.1 x = 0

0.4 x = 1

0 otherwise

Thus E[Xi] = −0.1, Var(Xi) = E[X2
i ] − E[Xi]

2 = 0.9 − (0.1)2 = .89. Let

S = X1 + · · · + X100. Therefore ES = −10, Var(S) = (100)(0.89) = 89. By

Chebychev’s inequality

P (S ≥ 0) = P (S + 10 ≥ 10)

≤ P (|S + 10| ≥ 10) ≤ Var(S)

(10)2
= .89.

By the central limit theorem,

P (S ≥ 0) = P

{
S + 10√

89
≥ 10√

89

}
≈ 1− Φ(1.06) = 0.1446.

To calculate the Chernoff bound, we find M(θ) = log(0.5eθ + 0.1 + 0.4e−θ) and

`(0) = exp(.4
√

5 + 0.1), yielding the upper bound P (S ≥ 0) ≤ (.4
√

5 + 0.1)100 =

0.57187.

It is not difficult to calculate P (S ≥ 0) numerically. The result is P (S ≥ 0) =

0.1572.... Thus, in this example, the approximation based on the central limit

theorem is fairly accurate, the Chernoff bound is somewhat loose, and the Cheby-

chev inequality is very loose.

2.21 Sums of i.i.d. random variables, III (a) ΦXi,n(u) = E
[
ejuXi,n

]
= 1 +

λ
n (eju − 1) so ΦYn(u) =

(
1 + λ

n (eju − 1)
)n
.

(b) Since limn→∞
(
1 + α

n

)α
= eα, it follows that limn→∞ΦYn(u) = eλ(eju−1).

This limit as a function of u is the characteristic function of a random variable

Y with the Poisson distribution with mean λ.

(c) Thus, (Yk) converges in distribution, and the limiting distribution is the
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Poisson distribution with mean λ. There is not enough information given in the

problem to determine whether Yn converges in any of the stronger senses (p.,

m.s., or a.s.), because the given information only describes the distribution of Yn
for each n but gives nothing about the joint distribution of the Yn’s. Note that

Yn has a binomial distribution for each n.

2.23 On the growth of the maximum of n independent exponentials (a) Let

n ≥ 2. Clearly FZn(c) = 0 for c ≤ 0. For c > 0,

FZn(c) = P{max{X1, . . . , Xn} ≤ c lnn}
= P{X1 ≤ c lnn, X2 ≤ c lnn, . . . ,Xn ≤ c lnn}
= P{X1 ≤ c lnn}P{X2 ≤ c lnn} · · ·P{Xn ≤ c lnn}
= (1− e−c lnn)n = (1− n−c)n.

(b) Or, FXn(c) = (1 + xn
n )n, where xn = −n1−c. Observe that as n→∞,

xn →





−∞ c < 1

−1 c = 1

0 c > 1,

so by Lemma 2.3.1 (and the monotonicity of the function ex to extend to the

case x = −∞),

FZn(c)→





0 c < 1

e−1 c = 1

1 c > 1.

Therefore, if Z∞ is the random variable that is equal to one with probability

one, then FZn(c) → FZ∞(c) at the continuity points (i.e. at c 6= 1) of FZ∞ . So

the sequence (Zn) converges to one in distribution.

2.25 Limit behavior of a stochastic dynamical system Due to the persistent

noise, just as for the example following Theorem 2.1.5 in the notes, the sequence

does not converge to an ordinary random variables in the a.s., p., or m.s. senses.

To gain some insight, imagine (or simulate on a computer) a typical sample

path of the process. A typical sample sequence hovers around zero for a while,

but eventually, since the Gaussian variables can be arbitrarily large, some value

of Xn will cross above any fixed threshold with probability one. After that,

Xn would probably converge to infinity quickly. For example, if Xn = 3 for

some n, and if the noise were ignored from that time forward, then X would go

through the sequence 9, 81, 6561, 43046721, 1853020188851841, 2.43 × 1030, . . .,

and one suspects the noise terms would not stop the growth. This suggests

that Xn → +∞ in the a.s. sense (and hence in the p. and d. senses as well.

(Convergence to +∞ in the m.s. sense is not well defined.) Of course, then, Xn

does not converge in any sense to an ordinary random variable.

We shall follow the above intuition to prove that Xn → ∞ a.s. If Wn−1 ≥ 3

for some n, then Xn ≥ 3. Thus, the sequence Xn will eventually cross above

the threshold 3. We say that X diverges nicely from time n if the event En =
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{Xn+k ≥ 3 · 2k for all k ≥ 0} is true. Note that if Xn+k ≥ 3 · 2k and Wn+k ≥
−3 · 2k, then Xn+k+1 ≥ (3 · 2k)2 − 3 · 2k = 3 · 2k(3 · 2k − 1) ≥ 3 · 2k+1. Therefore,

En ⊃ {Xn ≥ 3 and Wn+k ≥ −3 · 2k for all k ≥ 0}. Thus, using a union bound

and the bound Q(u) ≤ 1
2 exp(−u2/2) for u ≥ 0:

P (En|Xn ≥ 3) ≥ P{Wn+k ≥ −3 · 2k for all k ≥ 0}
= 1− P

(
∪∞k=0{Wn+k ≤ −3 · 2k}

)

≥ 1−
∞∑

k=0

P{Wn+k ≤ −3 · 2k} = 1−
∞∑

k=0

Q(3 · 2k ·
√

2)

≥ 1− 1

2

∞∑

k=0

exp(−(3 · 2k)2) ≥ 1− 1

2

∞∑

k=0

(e−9)k+1

= 1− e−9

2(1− e−9)
≥ 0.9999.

The pieces are put together as follows. Let N1 be the smallest time such that

XN1
≥ 3. Then N1 is finite with probability one, as explained above. Then X

diverges nicely from time N1 with probability at least 0.9999. However, if X

does not diverge nicely from time N1, then there is some first time of the form

N1 + k such that XN1+k < 3 · 2k. Note that the future of the process beyond

that time has the same evolution as the original process. Let N2 be the first

time after that such that XN2
≥ 3. Then X again has chance at least 0.9999

to diverge nicely to infinity. And so on. Thus, X will have arbitrarily many

chances to diverge nicely to infinity, with each chance having probability at least

0.9999. The number of chances needed until success is a.s. finite (in fact it has

the geometric distribution), so that X diverges nicely to infinity from some time,

with probability one.

2.27 Convergence analysis of successive averaging (b) The means µn of Xn

for all n are determined by the recursion µ0 = 0, µ1 = 1, and, for n ≥ 1,

µn+1 = (µn + µn−1)/2. This second order recursion has a solution of the form

µn = Aθn1 +Bθn2 , where θ1 and θ2 are the solutions to the equation θ2 = (1+θ)/2.

This yields µn = 2
3 (1− (− 1

2 )n).

(c) It is first proved that limn→∞Dn = 0 a.s.. Note that Dn = U1 · · ·Un−1. Since

lnDn = ln(U1) + · · · ln(Un−1) and E[lnUi] =
∫ 1

0
ln(u)du = (x lnx − x)|10 = −1,

the strong law of large numbers implies that limn→∞
lnDn
n−1 = −1 a.s., which in

turn implies limn→∞ lnDn = −∞ a.s., or equivalently, limn→∞Dn = 0 a.s.,

which was to be proved. By the hint, for each ω such that Dn(ω) converges to

zero, the sequence Xn(ω) is a Cauchy sequence of numbers, and hence has a

limit. The set of such ω has probability one, so Xn converges a.s.

2.29 Mean square convergence of a random series Let Yn = X1 + · · ·+Xn.

We are interested in determining whether limn→∞ Yn exists in the m.s. sense. By

Proposition 2.11, the m.s. limit exists if and only if the limit limm,n→∞E[YmYn]

exists and is finite. But E[YmYn] =
∑n∧m
k=1 σ2

k which converges to
∑∞
k=1 σ

2
k as

n,m→∞. Thus, (Yn) converges in the m.s. sense if and only if
∑∞
k=1 σ

2
k <∞.
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2.31 A large deviation Since E[X2
1 ] = 2 > 1, Cramér’s theorem implies that

b = `(2), which we compute. For a > 0,
∫∞
−∞ e−ax

2

dx =
∫∞
−∞ e

− x2

2( 1
2a

) dx =
√

π
a ,

so

M(θ) = lnE[eθx
2

] = ln

∫ ∞

−∞

1√
2π
e−x

2( 1
2−θ)dx = −1

2
ln(1− 2θ).

`(a) = max
θ

{
θa+

1

2
ln(1− 2θ)

}

=
1

2

(
1− 1

a

)

θ∗ =
1

2
(1− 1

a
)

b = `(2) =
1

2
(1− ln 2) = 0.1534

e−100b = 2.18× 10−7.

2.33 Sums of independent Cauchy random variables

(a) ΦSn/nθ (u) = E[exp(j u
nθ
X1)]n = Φ( u

nθ
)n = (exp(−| u

nθ
|)n = exp(−|u|n1−θ)

(b) Taking θ = 1 we see that Sn
n has the same distribution as X1 for all n.

Thus, Snn converges in distribution, and the limiting distribution is the standard

Cauchy distribution. (This answer suggests the answers to parts (c) and (d).)

(c) Taking θ = 2 yields that the characteristic function of Sn
n2 is exp(−|u|/n)

which converges to 1 for all u. But 1 is the characteristic function of a random

variable that is zero with probability one. Thus. Sn
n2 → 0 d. as n → ∞. A

different approach to part (c) is to use part (b) to find that for any ε > 0,

P
{
|Snn2 | ≤ ε

}
= P{|X1| ≤ nε} → 1 as n→∞.

(d) Taking θ = 1/2 yields that the characteristic function of Sn
n1/2 is exp(−|u|n1/2)

which converges to I{u=0} for all u. But I{u=0} is not a valid characteristic

function (since it is not continuous, for example) so that Sn
n1/2 does not converge

in distribution. A different approach to part (d) is to use part (b) to find that

for any constant c,

P{ Sn
n1/2 ≤ c} = P{X1 ≤ cn−1/2} → P{X1 ≤ 0} → 1/2. But the function equal

to the constant 1/2 is not a valid distribution function (it doesn’t converge to 0

at −∞, for example) so the same conclusion follows.

2.35 Chernoff bound for Gaussian and Poisson random variables

(a)MX(θ) = µθ+ θ2σ2

2 and l(a) = maxθ aθ−(µθ+ θ2

2σ2 ) = (a−µ)2

2σ2 . Taking a = µ+c

in the optimized Chernoff inequality yields P{X ≥ E[X] + c} ≤ exp(− c2

2σ2 ) for

c ≥ 0.

(b) The log moment generating function of Y is given by

MY (θ) = ln
∑∞
k=0

eθkλke−λ

k! = ln(eλ(eθ−1)) = λ(eθ − 1). Therefore,

l(a) = max
θ
aθ − eλ(θ − 1) = a ln(

a

λ
) + λ− a.
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Setting a = λ+ c in the optimized Chernoff inequality yields

P{Y ≥ E[Y ] + c} ≤ exp

(
−(λ+ c) ln

λ+ c

λ
+ c

)
.

(c) Using the definition of ψ yields c2

2λψ( cλ ) = λg(1 + c
λ ) = (λ+ c) ln λ+c

λ − c as

desired. For more information see Shorack and Wellner, Empirical Processess,

1986.

2.37 Large deviation exponent for a mixture distribution

(a) l̃(a) = maxθ {θa−MX(θ)} where

MX(θ) = logE[exp(θX)] = log{fE[exp(θY )] + (1− f)E[exp(θZ)]}
= log{f exp(MY (θ)) + (1− f) exp(MZ(θ))}.

(b) View f exp(MY (θ)) + (1 − f) exp(MZ(θ)) as an average of exp(MY (θ))

and exp(MZ(θ)). The definition of concavity (or Jensen’s inequality) applied

to the concave function log u implies that log(average) ≥ average(log), so that

log{f exp(MY (θ)) + (1 − f) exp(MZ(θ)) ≥ fMY (θ) + (1 − f)MZ(θ), where we

also used the fact that log expMY (θ) = MY (θ). Therefore, l̃(a) ≤ l(a) for all a.

Remark: This means that S̃n
n is more likely to have large deviations than Sn

n .

That is reasonable, because S̃n
n has randomness due not only to FY and FZ , but

also due to the random coin flips. This point is particularly clear in case the Y ’s

and Z’s are constant, or nearly constant, random variables.

2.39 Bernstein’s inequality in various asymptotic regimes (a) The bound be-

comes

P
{
Sn ≥ θ

√
n
}
≤ exp

(
−

1
2θ

2

σ2 + θL
3
√
n

)
.

(b) The bound becomes

P {Sn ≥ cn} ≤ exp

(
−

1
2c

2n

σ2 + cL
3

)
.

(b) The bound becomes

P {Sn ≥ α} ≤ exp

(
−

1
2α

2

γ + αL
3

)
.

3.1 Rotation of a joint normal distribution yielding independence

(a) |Cov(X)| = 1 and Cov(X)−1 =

(
1 −1

−1 2

)
so

fX(x) =
1

2π
exp

(
−1

2

(
x1 − 10

x2 − 5

)T (
1 −1

−1 2

)(
x1 − 10

x2 − 5

))

=
1

2π
exp

(
−1

2
{(x1 − 10)2 − 2(x1 − 10)(x2 − 5) + 2(x2 − 5)2}

)
.


