
C H A P T E R 2

Maxwell’s equation and
Electromagnetic
Waves

2.1 Consider a vector field V(r) = 4xx0 +5yy0 +6zz0 and a closed, cubical S surface
with side length L and one corner at the origin, lying in the first octant. Evaluate the
integral

∮
S V ·dA by first carrying out the dot product and integral on each of the six

faces of the cube, and adding them up. Check your answer by using the divergence
theorem, which you are likely able to do in your head.

Solution
Make a table to explicitly evaluate the surface integral:

Surface
∫

V ·dA
xy @ z = 0 0
xy @ z = L 6L ·L2

yz @ x = 0 0
yz @ x = L 4L ·L2

zx @ y = 0 0
zx @ y = L 5L ·L2

Sum 15L3

On the other hand,
∫
∇ ·Vdτ = 15

∫
dτ = 15L3.

2.2 Show that the integral form of Coulomb’s law can be derived from Gauss’s
law. First, argue why rotational symmetry implies that the electric field from a point
charge q has to be isotropic in all directions, and can only depend on the distance

15
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r from the charge. Next, use this to choose an appropriate “Gaussian surface” S so
that the integral in Equation (2.4a) is simple to evaluate. Finally, use Equation (2.5)
to show that the force F on another charge q′ is

F =
1

4πε0

qq′

r2

Solution
It is obvious that the field can only depend on r because there is no preferred
direction. Similarly, it can only be radially outward (or inward), so choose a Gaussian
surface that is a sphere of radius r centered at the origin. The magnitude E of the
electric field is given by (2.4a) as

E ·4πr2 =
q
ε0

so E =
1

4πε0

q
r2

and the force on a charge q′ is just q′E.

2.3 A “parallel plate capacitor” is made from two plane conducting sheets, each
with area A, separated by a distance d. The plates carry equal but opposite charges
±Q, uniformly distributed over their surface, and this creates a potential difference V
between them. Infer the (constant) electric field between the plates, and use Gauss’s
law to show that Q = CV , where C depends only A and d (and ε0).

Solution

The surface charge density is σ = Q/A, so a “pillbox” Gaussian surface with one flat
surface inside the metal plate (where the field is zero) and the other flat surface in the
gap, gives E = σ/ε0. The potential difference for this (constant) electric field is just
V = Ed = σd/ε0 = Qd/ε0A so that C = Q/V = ε0A/d.

2.4 Use the concept of a parallel plate capacitor to find the energy density in an
electric field. Charge is added in small increments dQ′ to an initially uncharged
capacitor giving a potential difference V ′. Each increment changes the stored energy
by V′dQ′ = (Q′/C)dQ′ where C is the capacitance. (See Problem 2.3.) Integrate to
find the total energy when charge Q is stored in the capacitor. Divide by the volume
of the capacitor to find the electric field energy density

uE =
1
2
ε0E2

where E is the electric field inside the capacitor.

Solution
Just do as the problem statement tells you to do:

ue =
1

Ad
U =

1
Ad

∫ Q

0

1
C

Q′dQ′ =
1

Ad
Q2

2C
=

1
Ad

(ε0EA)2

2ε0A/d
=

1
2
ε0E2
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2.5 Calculate the magnetic field at a distance r from an infinitely long straight wire
which carries a current I. First, using Gauss’s law for magnetism, explain why the
field must be tangential to a circle of radius r, centered on the wire and lying in a
plan perpendicular to the wire. Then use Ampére’s law to show that the magnitude
of the magnetic field is

B =
µ0I
2πr

Solution
The problem has cylindrical symmetry, but there is a handedness set by the direction
of the current. By Gauss’ Law for magnetism, there can be no radial component, as a
cylindrical Gaussian surface can pass no no flux. With a circular loop at radius r, the
line integral of Ampere’s Law (2.4d) is just B · 2πr for an azimuthal field B, hence
B = µ0I/2πr.

2.6 A long cylindrical coil of wire is called a solenoid and can be used to store a
magnetic field. If the coil is infinitely long, there is a uniform magnetic field in the
axial direction inside the coil, and no field outside the coil. Use an “Amperian Loop”
that is a rectangle enclosing some length of the coil, with one leg inside and one leg
outside, to show that the magnetic field is

B = µ0In

where I is the current in the wire and there are n turns per unit length in the coil.

Solution
The current enclosed in the rectangular loop is nI` where ` is the length of the loop.
There is no field outside the solenoid, and the field inside is parallel to the axis, so
the line integral just gives B`, hence B = µ0nI.

2.7 Find the vector potential A(r) which gives the magnetic field for the long
straight wire in Problem 2.5. It is easiest to let the wire lie along the z-axis and
express your result in terms of r = (x2 + y2)1/2, and to carry out the calculation in
cylindrical polar coordinates (r, θ,z).

Solution
B = Bθ̂=∇×A =−(∂Az/∂r)θ̂, so ∂Az/∂r =−µ0I/2πr and A =−(µ0I/2π) logr ẑ.

2.8 Follow this guide to convince yourself that the second term on the right in (2.4d)
is needed for the whole equation to make sense. First, imagine a long straight current-
carrying wire, with associated magnetic field given in Problem 2.5. Now “cut” the
wire, and insert a very thin capacitor, with plates perpendicular to the direction of
the wire. Current continues to flow through the wire while the capacitor charges up,
but no current flows between the capacitor plates, so it would seem there should be
no magnetic field there. But that doesn’t make sense: how could the magnetic field
just stop at the capacitor? Intuitively, you expect it to be continuous right through it.
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Finally, show that the second term, called a displacement current, in fact gives you
the same B inside the capacitor.

Solution The capacitor plates are circular with area A = πr2. The electric field flux
through this area is Aσ/ε0 = Q/ε0, since σ = Q/A. The left side of (2.4d) must equal
µ0I, where I = dQ/dt, so

µ0I = K
d
dt

[
Q
ε0

]
= K

I
ε0

which implies that K = ε0µ0, establishing (2.4d).

2.9 A “ 1/r2” vector field, such as the electric field from a point charge or the
gravitational field from a point mass, takes the form

V(r) =
k
r2 r0 =

k
r3 r

Show by an explicit calculation in Cartesian coordinate coordinates, that ∇ ·V = 0
everywhere, except at the origin. Then, using a spherical surface about the origin,
show that

∮
V · dA = 4πk. Hence argue that the charge density for a point charge q

located at the origin is qδ3(r) = qδ(x)δ(y)δ(z), where δ(x) is a Dirac δ(x) function as
defined in Chapter 1.

Solution
The calculation is straightforward, although a bit tedious:

∇ · k
r3 r = k

[
∂

∂x
x

(x2 + y2 + z2)3/2 +
∂

∂y
y

(x2 + y2 + z2)3/2 +
∂

∂z
z

(x2 + y2 + z2)3/2

]
=

1
r3 −

3x2

r5 +
1
r3 −

3y2

r5 +
1
r3 −

3z2

r5 =
3r2−3(x2 + yz + z2)

r5 = 0

for r , 0. For a sphere of radius r about the origin,
∮

V · dA = (k/r2) · 4πr2 = 4πk.
So, by Gauss’ Theorem for this spherical volume,

∫
∇ ·V = 4πk, but since∇ ·V = 0

everywhere except the origin, consider a small cube around the origin, and it is clear
that∇ ·V satisfies the properties of the 3D δ-function, i.e.∇ ·V = 4πkδ(x)δ(y)δ(z) =

4πkδ(3)(r). For Coulomb’s Law, V = E and k = q/4πε0, so Gauss’ Law takes the form
∇ ·E = qδ(3)(r)/ε0. Comparing to (2.19a), this implies ρ(r) = qδ(3)(r) for a point
charge q.

2.10 A “ 1/r” vector field, such as the magnetic field from an infinitely long current
carrying wire, takes the form

V(r) =
k
r
φ0 =

k
rz

[
−yx0 + xy0

]
Show by an explicit calculation in Cartesian coordinate coordinates, that ∇×V = 0
everywhere, except at the origin. Then, using a circular curve about the z-axis, show
that

∮
V ·dl = 2πk. Hence argue that the current density for an infinitely long current

carrying wire of zero thickness located along the z-axis is Iδ(x)δ(y).
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Solution
The calculation is straightforward, but tedious. Also, note here that r2 = x2 +

y2.

∇× k
r2 (−yx0 + xy0) = k

[
1
r2
∂x
∂x

+ x
∂

∂x
1

x2 + y2 +
1
r2
∂y
∂y

+ y
∂

∂y
1

x2 + y2

]
z0

=
k
r2

[
1−

2x2

r2 + 1−
2y2

r2

]
z0 =

k
r4

[
2−2x22y2

]
z0 = 0

except for r , 0. For the circular loop,
∮

V ·dl = (k/r)(2πr) = 2πk. Therefore, using the
magnetic field B from a line current, we get k = µ0I/2π. Applying Stokes’ Theorem
along with (2.19d) implies that j = Iδ(2)(r)z0.

2.11 Derive the wave equation for the magnetic field B from Maxwell’s equations.

Solution
Start with Equations (2.19), and take the curl of (2.19b) with j = 0:

∇× (∇×B) =∇(∇ ·B)−∇2B = −∇2B = µ0ε0
∂

∂t

(
−
∂B
∂t

)
= −

1
c2
∂2B
∂t2

since µ0ε0 = 1/c2, and using (2.32) with (2.19c) and (2.19b). This gives

1
c2
∂2B
∂t2 −∇

2B = 0

2.12 Show that (2.39) is a solution to the wave Equation (2.34). It is easier to do
if you express the Laplacian in spherical coordinates, but you may find it more
satisfying to work it through in Cartesian coordinate coordinates, remembering that
r = (x2 + y2 + z2)1/2.

Solution
There is a typo in the problem. It should ask to show that (2.41) is a solution, not
(2.39). That is, taking time derivatives and with ω = kc, we need to show that

∇2
[

f (kr−ωt)
r

g(θ,φ)
]

= k2 r2 f ′′(kr−ωt)
r

g(θ,φ)

The Laplacian in spherical coordinates is easy enough to find, for example (6.19).
So,

g
1
r2

∂

∂r

(
r2 ∂

∂r
f
r

)
+

f
r3

[
1

sinθ
∂

∂θ

(
sinθ

∂g
∂θ

)
+

1

sin2 θ

∂2g
∂φ2

]
= k2 f ′′

r
g

Now work on the first term on the left hand side of the above equation:

g
1
r2

∂

∂r

(
r2 ∂

∂r
f
r

)
= g

1
r2

∂

∂r

(
r
∂ f
∂r
− f

)
= g

1
r2

(
∂ f
∂r

+ r
∂2 f
∂r2 −

∂ f
∂r

)
= g

1
r

k2 f ′′
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That is, this cancels with the right side of the wave equation, leaving

1
sinθ

∂

∂θ

(
sinθ

∂g
∂θ

)
+

1

sin2 θ

∂2g
∂φ2 = 0

which is a differential equation that can be solved for g(θ,φ).

2.13 Find the electrostatic potential V(r) at a distance r from a point charge q, with
the integration constant defined so that V(r)→ 0 as r→∞. You can do this either by
directly integrating

∫
C E · dl along some path C, or by simply guessing the function

V(r) which satisfies (2.20).

Solution
Let the curve C be the straight line starting at r and extending radially to∞. That is,
dl = dr and with E = (1/4πε0)qr/r3, we have

V(r) = −

∫ ∞

r

1
4πε0

q
r3 rdr = −

q
4πε0

∫ ∞

r

1
r2 dr =

q
4πε0

1
r

∣∣∣∣∣∞
r

=
1

4πε0

q
r

Going the other way, and using Cartesian coordinates, we need to calculate

−∇V(r) =−
q

4πε0

[
x0

∂

∂x
+ y0

∂

∂y
+ z0

∂

∂z

]
1

(x2 + y2 + z2)1/2 =
q

4πε0

xx0 + yy0 + zz0

(x2 + y2 + z2)3/2 =
q

4πε0

r
r3

2.14 An “electric dipole” is formed by two point charges ±q separated by a distance
d. Form such a system by putting the two charges on the z-axis at z = ±d/2 and
calculate the electric field E(r). Show that for distances r� d, the electric field can
be written in terms of the electric dipole moment vector p = qdz0 instead of explicitly
on either q or d.

Solution
Just go ahead and add the electric fields of the two charges:

E(r) =
q

4πε0

[
r− (d/2)ẑ0

|r− (d/2)ẑ0|
3 −

r + (d/2)ẑ0

|r + (d/2)ẑ0|
3

]
=

q
4πε0

1
r3

[
r− (d/2)ẑ0

|r̂− (d/2r)ẑ0|
3 −

r + (d/2)ẑ0

|r̂ + (d/2r)ẑ0|
3

]
For r� d, the denominators can be expanded using

|r̂∓ (d/2r)ẑ0| = [(r̂∓ (d/2r)ẑ0) · (r̂∓ (d/2r)ẑ0)]1/2

=
[
(1 + d2/4r2)∓ (d/r)r̂ · ẑ0

]1/2

≈ 1∓
d
2r

r̂ · ẑ0
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Therefore

E(r) =
q

4πε0

1
r3

[(
r−

d
2

ẑ0

)(
1 +

3d
2r

r̂ · ẑ0

)
−

(
r +

d
2

ẑ0

)(
1−

3d
2r

r̂ · ẑ0

)]
=

q
4πε0

1
r3

[
3d
r

r(r̂ · ẑ0)−dẑ0 +O

(
d2

r2

)]
=

1
4πε0

qd
r3 [3r̂(r̂ · ẑ0)− ẑ0] =

1
4πε0

1
r3

[
3r̂(r̂ ·p)−p

]
2.15 Find the electrostatic potential V(r) at a distance r from the center of the

electric dipole in Problem 2.14. Express your answer in terms of the electric dipole
moment p.

Solution
We need to find the V(r) that satisfies E = −∇V . Working in spherical polar
coordinates with r̂ ·p = pcosθ and ẑ0 = r̂cosθ− θ̂ sinθ, this becomes

∂V
∂r

r̂ +
1
r
∂V
∂θ

θ̂ =
1

4πε0

p
r3

[
(r̂cosθ− θ̂ sinθ)−3r̂cosθ

]
= −

1
4πε0

p
r3

[
2r̂cosθ+ θ̂ sinθ

]
The correct form for V(r) is now apparent, namely

V(r) =
1

4πε0

p
r2 cosθ =

1
4πε0

p · r̂
r2

Of course, one can also just add the electric potential of the two charges:

V(r) =
q

4πε0

[
1

|r− (d/2)ẑ0|
−

1
|r + (d/2)ẑ0|

]
=

q
4πε0

[
1 +

d
2r

r̂ · ẑ0−

(
1−

d
2r

r̂ · ẑ0

)]
=

1
4πε0

qd
r

r̂ · ẑ0 =
1

4πε0

p · r̂
r2

2.16 Draw the electric field lines for and electric dipole with dipole moment p = pz0.
Superimpose contour lines of electric potential on top of the field lines. This is best
done by choosing some specific values and using a program such as MATHEMATICA.

Solution
Making dipole field plots in MATHEMATICA is relatively straightforward, in fact,
a module in their documentation shows how to do this in three dimensions. The
plots below were made by writing the potential in polar coordinates, calculating the
field from the gradient, and using the TransformedField function to transform to
Cartesian coordinates before generating the plot. (The dipole lies in the x-direction.)
In both cases, ContourPlot is used to plot the potential, specifying the contour line
values. The left uses VectorPlot for the field. The right uses StreamPlot, which
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requires less adjustment of options, but which plots only enough arrows so that the
density across the plot is more or less constant.

2.17 An electric dipole p = qdz0 sits in a uniform, external electric field E. By
considering the torque on the dipole, from the interaction of the charges ±q with
E, calculate the work needed to rotate the dipole through an angle θ, about an axis
perpendicular to the plane formed by p and E. Thereby show that the electrostatic
potential energy of the dipole in the external field is UE = −p ·E.

Solution
See the figure. The torque on the dipole is τ = 2F(d/2)sinθ = qdE sinθ, so the work
needed to rotate it to this position is

UE =

∫ θ

0
τdθ = −qdE cosθ = −p ·E

2.18 A “magnetic dipole” is formed by a planar loop of wire with area A and
carrying current I. Using an approach similar to that in Problem 2.17, show that
the magnetic potential energy of a magnetic dipole in an external magnetic field
B is UB = −µ ·B. Here, the magnetic moment µ has magnitude IA and direction
perpendicular to the plane of the loop. You can do this rather easily if you model the
loop as a square of side length L, in which case A = L2, then use an argument similar
to that used to prove Stokes’ theorem to explain why deriving this for a square is
equivalent to solving it for any planar loop.

Solution
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This is essentially the same as Problem 17. Orient the square loop so that the normal
to the plane and the magnetic field form a plane that is parallel to two sides of the
square. Then the force on those two sides just point into, or out of, the loop, with no
torque or net force. The force on the other two sides, however, are each ILB with a
lever arm L/2, so the torque on the loop is 2× (ILB)(L/2)sinθ = (IL2)Bsinθ, where
θ is the angle between the loop normal and the magnetic field. Integrating to find the
work gives UB = −µ ·B.

The “Stokes’ Theorem” argument just says that we can build up any loop out of a
large number of tiny square loops, and the torques add up, as does the area of the big
loop.

2.19 Given a scalar function χ(r, t), show explicitly that the transformation A→
A +∇χ has no effect on the magnetic field. Then find the condition that needs to be
satisfied by χ so that the additional transformation V → V +χ has no effect on the
electric field.

Solution
For A→ A′ = A +∇χ, we have, using (2.24),

B′ =∇×A′ =∇×A +∇×∇χ =∇×A = B

since the curl of any gradient is zero. Now following (2.25) we write

E′ = −∇V′−
∂A′

∂t
= −∇V −∇χ− ∂A

∂t
−
∂χ

∂t
= E−

(
∇χ+

∂χ

∂t

)
Therefore, the expression in parenthesis must be zero for the electric field to remain
unchanged. In terms of special relativity, this means that the “four gradient” of χ
must be zero.

2.20 The Poynting Vector S = (1/µ0)E×B for an electromagnetic wave. What is
the direction of this vector? Show that the Poynting Vector has the dimensions of
“energy flux,” that is, energy per unit area per unit time.

Solution
From (2.39), we see that

E0×B0 =
1
c

E0× (k0×E0) =
1
c

k0(E ·E)−
1
c

E0(E ·k0) =
1
c

k0E2
0

since k0 is perpendicular to E0. Thus, the direction of the Poynting vector is in
fact the direction of the wave propagation. (The Poynting vector “points.”) Now
since

1
µ0

E0×B0 =
ε0

ε0µ0
E0×B0 =

ε0E2
0

cε0µ0
k0 = 2c

(
1
2
ε0E2

0

)
k0

we see that the Poynting vector has dimensions

velocity× energy density = energy/ (area× time)

(See Problem 2.4. Also, k0 is a dimensionless unit vector.)


