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CHAPTER 2 
 

Section 2.1 

 
1.  

a. S = {1324, 1342, 1423, 1432, 2314, 2341, 2413, 2431, 3124, 3142, 4123, 4132, 3214, 3241, 4213, 

4231}. 

 

b. Event A contains the outcomes where 1 is first in the list: 

A = {1324, 1342, 1423, 1432}. 

 

c. Event B contains the outcomes where 2 is first or second: 

B = {2314, 2341, 2413, 2431, 3214, 3241, 4213, 4231}. 

  

d. The event AB contains the outcomes in A or B or both: 

AB = {1324, 1342, 1423, 1432, 2314, 2341, 2413, 2431, 3214, 3241, 4213, 4231}. 

AB = , since 1 and 2 can’t both get into the championship game. 

A = S – A = {2314, 2341, 2413, 2431, 3124, 3142, 4123, 4132, 3214, 3241, 4213, 4231}. 

 

 

2.  
a. A = {RRR, LLL, SSS}. 

 

b. B = {RLS, RSL, LRS, LSR, SRL, SLR}. 

 

c. C = {RRL, RRS, RLR, RSR, LRR, SRR}. 

 

d. D = {RRL, RRS, RLR, RSR, LRR, SRR, LLR, LLS, LRL, LSL, RLL, SLL, SSR, SSL, SRS, SLS, RSS, LSS} 

 

e. Event D contains outcomes where either all cars go the same direction or they all go different 

directions: 

D = {RRR, LLL, SSS, RLS, RSL, LRS, LSR, SRL, SLR}. 

Because event D totally encloses event C (see the lists above), the compound event CD is just event 

D: 

CD = D = {RRL, RRS, RLR, RSR, LRR, SRR, LLR, LLS, LRL, LSL, RLL, SLL, SSR, SSL, SRS, SLS, 

RSS, LSS}. 

Using similar reasoning, we see that the compound event CD is just event C: 

CD = C = {RRL, RRS, RLR, RSR, LRR, SRR}. 
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3.  
a. A = {SSF, SFS, FSS}. 

 

b. B = {SSS, SSF, SFS, FSS}. 

 

c. For event C to occur, the system must have component 1 working (S in the first position), then at least 

one of the other two components must work (at least one S in the second and third positions):  C = 

{SSS, SSF, SFS}. 

 

d. C = {SFF, FSS, FSF, FFS, FFF}. 

AC = {SSS, SSF, SFS, FSS}. 

AC = {SSF, SFS}. 

BC = {SSS, SSF, SFS, FSS}. Notice that B contains C, so BC = B.   

BC = {SSS SSF, SFS}. Since B contains C, BC = C. 

 

4.  
a. The 24 = 16 possible outcomes have been numbered here for later reference. 

 

 Home Mortgage Number 

Outcome 1 2 3 4 

1 F F F F 

2 F F F V 

3 F F V F 

4 F F V V 

5 F V F F 

6 F V F V 

7 F V V F 

8 F V V V 

9 V F F F 

10 V F F V 

11 V F V F 

12 V F V V 

13 V V F F 

14 V V F V 

15 V V V F 

16 V V V V 

 
b. Outcome numbers 2, 3, 5, 9 above. 

 

c. Outcome numbers 1, 16 above. 

 

d. Outcome numbers 1, 2, 3, 5, 9 above. 

 

e. In words, the union of (c) and (d) is the event that either all of the mortgages are variable, or that at 

most one of them is variable-rate: outcomes 1, 2, 3, 5, 9, 16.  The intersection of (c) and (d) is the event 

that all of the mortgages are fixed-rate: outcome 1. 

 

f. The union of (b) and (c) is the event that either exactly three are fixed, or that all four are the same:  

outcomes 1, 2, 3, 5, 9, 16.  The intersection of (b) and (c) is the event that exactly three are fixed and 

all four are the same type.  This cannot happen (the events have no outcomes in common), so the 

intersection of (b) and (c) is . 
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5.  

a. The 33 = 27 possible outcomes are numbered below for later reference. 

  

Outcome   Outcome  

Number Outcome  Number Outcome 

1 111  15 223 

2 112  16 231 

3 113  17 232 

4 121  18 233 

5 122  19 311 

6 123  20 312 

7 131  21 313 

8 132  22 321 

9 133  23 322 

10 211  24 323 

11 212  25 331 

12 213  26 332 

13 221  27 333 

14 222    

 

b. Outcome numbers 1, 14, 27 above. 

 

c. Outcome numbers 6, 8, 12, 16, 20, 22 above. 

 

d. Outcome numbers 1, 3, 7, 9, 19, 21, 25, 27 above. 

 

 

6.  

a. S = {123, 124, 125, 213, 214, 215, 13, 14, 15, 23, 24, 25, 3, 4, 5}. 

 

b. A = {3, 4, 5}. 

 

c. B = {125, 215, 15, 25, 5}. 

 

d. C = {23, 24, 25, 3, 4, 5}. 

 

 

7.  

a. S = {BBBAAAA, BBABAAA, BBAABAA, BBAAABA, BBAAAAB, BABBAAA, BABABAA, BABAABA, 

BABAAAB, BAABBAA, BAABABA, BAABAAB, BAAABBA, BAAABAB, BAAAABB, ABBBAAA, 

ABBABAA, ABBAABA, ABBAAAB, ABABBAA, ABABABA, ABABAAB, ABAABBA, ABAABAB, 

ABAAABB, AABBBAA, AABBABA, AABBAAB, AABABBA, AABABAB, AABAABB, AAABBBA, 

AAABBAB, AAABABB, AAAABBB}. 

 

b. AAAABBB, AAABABB, AAABBAB, AABAABB, AABABAB. 
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8.  

a. A1  A2  A3  

b. A1  A2  A3  

c. 1 2 3A AA     

d. 1 2 3 1 2 3 1 2 3)(( ) ( )A AA A A A A AA            

e. A1  (A2  A3)  
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9.  

a. In the diagram on the left, the shaded area is (AB).  On the right, the shaded area is A, the striped 

area is B, and the intersection AB occurs where there is both shading and stripes.  These two 

diagrams display the same area. 

b. In the diagram below, the shaded area represents (AB).  Using the right-hand diagram from (a), the 

union of A and B is represented by the areas that have either shading or stripes (or both).  Both of the 

diagrams display the same area. 

 

10.  

a. Many examples exist; e.g., A = {Chevy, Buick}, B = {Ford, Lincoln}, C = {Toyota} are three mutually 

exclusive events. 

 

b. No. Let E = {Chevy, Buick}, F = {Buick, Ford}, G = {Toyota}.  These events are not mutually 

exclusive (E and F have an outcome in common), yet there is no outcome common to all three events. 

 



Chapter 2:  Probability 

 53 

Section 2.2 

 
11.  

a. .07. 

 

b. .15 + .10 + .05 = .30. 

 

c. Let A = the selected individual owns shares in a stock fund. Then P(A) = .18 + .25 = .43. The desired 

probability, that a selected customer does not shares in a stock fund, equals P(A′) = 1 – P(A) = 1 – .43 

= .57. This could also be calculated by adding the probabilities for all the funds that are not stocks. 

 

12.  

a. No, this is not possible. Since event A  B is contained within event B, it must be the case that         

P(A  B) ≤ P(B). However, .5 > .4. 

 

b. By the addition rule, P(A  B) = .5 + .4 – .3 = .6. 

 

c. P(neither A nor B) = P(A  B) = P((A  B)) = 1 – P(AB) = 1 – .6 = .4. 

 

d. The event of interest is AB; from a Venn diagram, we see P(A  B) = P(A) – P(A  B) = .5 – .3 = 

.2. 

 

e. From a Venn diagram, we see that the probability of interest is P(exactly one) = P(at least one) – 

P(both) = P(A  B) – P(A  B) = .6 – .3 = .3. 

 

 

13.  

a. 1 2A A = “awarded either #1 or #2 (or both)”: from the addition rule, 

P(A1  A2) = P(A1) + P(A2) – P(A1  A2) = .22 + .25 – .11 = .36. 

 

b. 1 2AA  = “awarded neither #1 or #2”: using the hint and part (a), 

 1 2 1 2 1 2( ) (( ) ) 1 ( )P A A A P A AP A       = 1 – .36 = .64. 

 

c. 1 2 3A A A  = “awarded at least one of these three projects”: using the addition rule for 3 events, 

1 2 3( )AP A A    1 2 3 1 2 1 3 2 3 1 2 3) ( ) ( ) ( ) ( ) ( ) )( (P A P A P A A P A A P A A P A A AP A            = 

.22 +.25 + .28 – .11 – .05 – .07 + .01 = .53. 

 

d. 1 2 3A AA    = “awarded none of the three projects”: 

 1 2 3( )AP A A   = 1 – P(awarded at least one) = 1 – .53 = .47. 
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e. 1 2 3A AA   = “awarded #3 but neither #1 nor #2”: from a Venn diagram,  

 1 2 3( )A AP A  = P(A3) – P(A1  A3) – P(A2  A3) + P(A1  A2  A3) = 

.28 – .05 – .07 + .01 = .17. The last term addresses the “double counting” of the two subtractions. 

     
f. 

1 2 3( )AA A  = “awarded neither of #1 and #2, or awarded #3”: from a Venn diagram, 

1 2 3( ))( A AP A  = P(none awarded) + P(A3) = .47 (from d) + .28 = 75.   

 
Alternatively, answers to a-f can be obtained from probabilities on the accompanying Venn diagram: 

 
14. Let A = an adult consumes coffee and B = an adult consumes carbonated soda. We’re told that P(A) = .55, 

P(B) = .45, and P(A  B) = .70. 

a. The addition rule says P(AB) = P(A) + P(B) – P(AB), so .70 = .55 + .45 – P(AB) or P(AB) = .55 

+ .45 – .70 = .30. 

 

b. There are two ways to read this question. We can read “does not (consume at least one),” which means 

the adult consumes neither beverage. The probability is then P(neither A nor B) = )(P BA  = 1 –   

P(A  B) = 1 – .70 = .30. 

 

The other reading, and this is presumably the intent, is “there is at least one beverage the adult does not 

consume, i.e. BA  . The probability is )(P BA   = 1 – P(A  B) = 1 – .30 from a = .70.  (It’s just a 

coincidence this equals P(A  B).) 

 

Both of these approaches use deMorgan’s laws, which say that )(P BA  = 1 – P(AB) and 

)(P BA   = 1 – P(AB). 
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15.   

a. Let E be the event that at most one purchases an electric dryer.  Then E is the event that at least two 

purchase electric dryers, and P(E) = 1 – P(E) = 1 – .428 = .572. 

 

b. Let A be the event that all five purchase gas, and let B be the event that all five purchase electric.  All 

other possible outcomes are those in which at least one of each type of clothes dryer is purchased.  

Thus, the desired probability is 1 – [P(A) – P(B)] =  

1 – [.116 + .005] = .879. 

 

 

16.  

a. There are six simple events, corresponding to the outcomes CDP, CPD, DCP, DPC, PCD, and PDC.  

Since the same cola is in every glass, these six outcomes are equally likely to occur, and the probability 

assigned to each is
6
1 . 

 

b. P(C ranked first) = P({CPD, CDP}) = 1 1 2
6 6 6
  = .333. 

 

c. P(C ranked first and D last) = P({CPD}) = 
6
1 . 

 

17.  

a. The probabilities do not add to 1 because there are other software packages besides SPSS and SAS for 

which requests could be made. 

 

b. P(A) = 1 – P(A) = 1 – .30 = .70. 

 

c. Since A and B are mutually exclusive events, P(A  B) = P(A) + P(B) = .30 + .50 = .80.  

 

d. By deMorgan’s law, P(A  B) = P((A  B)) = 1 – P(A  B) = 1 – .80 = .20. 

In this example, deMorgan’s law says the event “neither A nor B” is the complement of the event 

“either A or B.”  (That’s true regardless of whether they’re mutually exclusive.) 

 

 

18. The only reason we’d need at least two selections to find a $10 bill is if the first selection was not a $10 bill 

bulb. There are 4 + 6 = 10 non-$10 bills out of 5 + 4 + 6 = 15 bills in the wallet, so the probability of this 

event is simply 10/15, or 2/3. 

 

 

19. Let A be that the selected joint was found defective by inspector A, so P(A) = 
000,10

724 .  Let B be analogous 

for inspector B, so P(B) = 
000,10

751 .  The event “at least one of the inspectors judged a joint to be defective is 

AB, so P(AB) = 
000,10

1159 . 

 

a. By deMorgan’s law, P(neither A nor B) = )(P BA  = 1 – P(AB) = 1 – 
000,10

1159  = 
000,10

8841  = .8841. 

 

b. The desired event is BA. From a Venn diagram, we see that P(BA) = P(B) – P(AB). From the 

addition rule,  P(AB) = P(A) + P(B) – P(AB) gives P(AB) = .0724 + .0751 – .1159 = .0316.  

Finally, P(BA) = P(B) – P(AB) = .0751 – .0316 = .0435. 
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20.  

a. Let S1, S2 and S3 represent day, swing, and night shifts, respectively.  Let C1 and C2 represent unsafe 

conditions and unrelated to conditions, respectively. Then the simple events are S1C1, S1C2, S2C1, S2C2, 

S3C1, S3C2. 

 

b. P(C1)= P({S1C1, S2C1, S3C1})= .10 + .08 + .05 = .23. 

 

c. P( 1S  ) = 1 – P({S1C1, S1C2}) = 1 – ( .10 + .35) = .55. 

 

 

21. In what follows, the first letter refers to the auto deductible and the second letter refers to the homeowner’s 

deductible. 

a. P(MH) = .10. 

 

b. P(low auto deductible) = P({LN, LL, LM, LH}) = .04 + .06 + .05 + .03 = .18. Following a similar 

pattern, P(low homeowner’s deductible) = .06 + .10 + .03 = .19. 

 

c. P(same deductible for both) = P({LL, MM, HH}) = .06 + .20 + .15 = .41. 

 

d. P(deductibles are different) = 1 – P(same deductible for both) = 1 – .41 = .59. 

 

e. P(at least one low deductible) = P({LN, LL, LM, LH, ML, HL}) = .04 + .06 + .05 + .03 + .10 + .03 = 

.31. 

 

f. P(neither deductible is low) = 1 – P(at least one low deductible) = 1 – .31 = .69. 

 

 

22. Let A = motorist must stop at first signal and B = motorist must stop at second signal. We’re told that P(A) 

= .4, P(B) = .5, and P(A  B) = .6. 

a. From the addition rule, P(A  B) = P(A) + P(B) – P(A  B), so .6 = .4 + .5 – P(A  B), from which 

P(A  B) = .4 + .5 – .6 = .3. 

 

b. From a Venn diagram, P(A  B) = P(A) – P(A  B) = .4 – .3 = .1. 

 

c. From a Venn diagram, P(stop at exactly one signal) = P(A  B) – P(A  B) = .6 – .3 = .3. Or, P(stop at 

exactly one signal) = P([A  B] [A  B]) = P(A  B) + P(A  B) = [P(A) – P(A  B)] + [P(B) – 

P(A  B)] = [.4 – .3] + [.5 – .3] = .1 + .2 = .3. 

 

 

23. Assume that the computers are numbered 1-6 as described and that computers 1 and 2 are the two laptops.  

There are 15 possible outcomes: (1,2) (1,3) (1,4) (1,5) (1,6) (2,3) (2,4) (2,5) (2,6) (3,4) (3,5) (3,6) (4,5) 

(4,6) and (5,6). 

 

a. P(both are laptops) = P({(1,2)}) = 
15
1 =.067. 

 

b. P(both are desktops) = P({(3,4) (3,5) (3,6) (4,5) (4,6) (5,6)}) = 
15
6 = .40. 

 

c. P(at least one desktop) = 1 – P(no desktops) = 1 – P(both are laptops) = 1 – .067 = .933. 

 

d. P(at least one of each type) =  1 – P(both are the same) = 1 – [P(both are laptops) +      P(both are 

desktops)]  =  1 – [.067 + .40] = .533. 
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24. Since A is contained in B, we may write B = A  (B  A), the union of two mutually exclusive events. (See 

diagram for these two events.) Apply the axioms: 

P(B) = P(A  (B  A)) = P(A) + P(B  A) by Axiom 3. Then, since P(B  A) ≥ 0 by Axiom 1, P(B) = 

P(A) + P(B  A) ≥ P(A) + 0 = P(A). This proves the statement. 

 

 

 

 

 

 

 

 

 

 

 

 

For general events A and B (i.e., not necessarily those in the diagram), it’s always the case that AB is 

contained in A as well as in B, while A and B are both contained in AB. Therefore, P(AB)  P(A)  

P(AB) and P(AB)  P(B)  P(AB). 

 

 

25. By rearranging the addition rule, P(A  B) =  P(A) + P(B) – P(AB) = .40 + .55 – .63 = .32. By the same 

method, P(A  C) = .40 + .70 – .77 = .33 and P(B  C) = .55 + .70 – .80 = .45. Finally, rearranging the 

addition rule for 3 events gives 

P(A  B  C) = P(A  B  C) – P(A) – P(B) – P(C) + P(A  B) + P(A  C) + P(B  C) = .85 – .40 – .55 

– .70 + .32 + .33 + .45 = .30. 

 

These probabilities are reflected in the Venn diagram below. 

 

 
 

a. P(A  B  C) = .85, as given. 

 

b. P(none selected) = 1 – P(at least one selected) = 1 – P(A  B  C) = 1 – .85 = .15. 

 

c. From the Venn diagram, P(only automatic transmission selected) = .22. 

 

d. From the Venn diagram, P(exactly one of the three) = .05 + .08 + .22 = .35. 

 

 

A 

B 

shaded area = B  A 

.05 
.02 

.03 

.08 

.30 

.15 

.22 .15 

A B 

C 
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26. These questions can be solved algebraically, or with the Venn diagram below. 

a. 
1 1( ) 1 ( )P A P A   = 1 – .12 = .88. 

   

b. The addition rule says ) ( )( ( ) ( )P B P A P B A BA P     . Solving for the intersection (“and”) 

probability, you get 1 2 1 2 1 2) ( ) ( ) ( )( A P A P AP A P A A     = .12 + .07 – .13 = .06. 

 

c. A Venn diagram shows that ) ( ) ( )( B P AP A P A B    . Applying that here with 
1 2A AA   and B 

= A3, you get 1 2 3 1 2 1 2 3([ ) ((] ) )P A P AA A A P A A A     =     .06 – .01 = .05. 

 

d. The event “at most two defects” is the complement of “all three defects,” so the answer is just 1 – 

1 2 3( )P A A A   = 1 – .01 = .99. 

 

 

 
 

 

 

27. There are 10 equally likely outcomes: {A, B} {A, Co} {A, Cr} {A,F} {B, Co} {B, Cr} {B, F} {Co, Cr} 

{Co, F} and {Cr, F}. 

a. P({A, B}) = 1
10

 = .1. 

 

b. P(at least one C) = P({A, Co} or {A, Cr} or {B, Co} or {B, Cr} or {Co, Cr} or {Co, F} or {Cr, F}) = 
7

10
= .7. 

 

c. Replacing each person with his/her years of experience, P(at least 15 years) = P({3, 14} or {6, 10} or 

{6, 14} or {7, 10} or {7, 14} or {10, 14}) = 6
10

= .6. 

 

 

28. Recall there are 27 equally likely outcomes. 

a. P(all the same station) = P((1,1,1) or (2,2,2) or (3,3,3)) = 
9
1

27
3  . 

 

b. P(at most 2 are assigned to the same station) = 1 – P(all 3 are the same) = 1 – 1
9

= 8
9

. 

 

c. P(all different stations) = P((1,2,3) or (1,3,2) or (2,1,3) or (2,3,1) or (3,1,2) or (3,2,1))  

= 
9
2

27
6  . 

 

.04

  

.05 

.02 

.00 

.01 

.01 

.01 .86 

A1 A2 

A3 
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Section 2.3 

 
29.  

a. There are 26 letters, so allowing repeats there are (26)(26) = (26)2 = 676 possible 2-letter domain 

names. Add in the 10 digits, and there are 36 characters available, so allowing repeats there are 

(36)(36) = (36)2 = 1296 possible 2-character domain names. 

 

b. By the same logic as part a, the answers are (26)3 = 17,576 and (36)3 = 46,656. 

 

c. Continuing, (26)4 = 456,976; (36)4 = 1,679,616. 

 

d. P(4-character sequence is already owned) = 1 – P(4-character sequence still available) = 1 – 

97,786/(36)4 = .942. 

 

30.  

a. Because order is important, we’ll use P3,8 = (8)(7)(6) = 336. 

 

b. Order doesn’t matter here, so we use 
30

6

 
 
 

 = 593,775. 

 

c. The number of ways to choose 2 zinfandels from the 8 available is 
8

2

 
 
 

. Similarly, the number of ways 

to choose the merlots and cabernets are 
10

2

 
 
 

and 
12

2

 
 
 

, respectively. Hence, the total number of 

options (using the Fundamental Counting Principle) equals  
8 10 12

2 2 2

   
   
   

= (28)(45)(66) = 83,160. 

d. The numerator comes from part c and the denominator from part b:  
83,160

593,775
= .140. 

e. We use the same denominator as in part d.  The number of ways to choose all zinfandel is 
8

6

 
 
 

, with 

similar answers for all merlot and all cabernet. Since these are disjoint events,  P(all same) = P(all zin) + 

P(all merlot) + P(all cab) = 002.
775,593

1162

6

30

6

12

6

10

6

8







































. 

 

 

31.  

a. Use the Fundamental Counting Principle: (9)(5) = 45. 

 

b. By the same reasoning, there are (9)(5)(32) = 1440 such sequences, so such a policy could be carried 

out for 1440 successive nights, or almost 4 years, without repeating exactly the same program. 
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32.  

a. Since there are 5 receivers, 4 CD players, 3 speakers, and 4 turntables, the total number of possible 

selections is (5)(4)(3)(4) = 240. 

 

b. We now only have 1 choice for the receiver and CD player: (1)(1)(3)(4) = 12. 

 

c. Eliminating Sony leaves 4, 3, 3, and 3 choices for the four pieces of equipment, respectively: 

(4)(3)(3)(3) = 108. 

 

d. From a, there are 240 possible configurations. From c, 108 of them involve zero Sony products.  So, 

the number of configurations with at least one Sony product is 240 – 108 = 132. 

 

e. Assuming all 240 arrangements are equally likely, P(at least one Sony) =
132

240
= .55. 

 

Next, P(exactly one component Sony) = P(only the receiver is Sony) + P(only the CD player is Sony) 

+ P(only the turntable is Sony). Counting from the available options gives  

P(exactly one component Sony) = 
(1)(3)(3)(3) (4)(1)(3)(3) (4)(3)(3)(1) 99

.413
240 240

 
  . 

 

 

33.  

a. Since there are 15 players and 9 positions, and order matters in a line-up (catcher, pitcher, shortstop, 

etc. are different positions), the number of possibilities is P9,15 = (15)(14)…(7) or 15!/(15–9)! = 

1,816,214,440. 

 

b. For each of the starting line-ups in part (a), there are 9! possible batting orders. So, multiply the answer 

from (a) by 9! to get (1,816,214,440)(362,880) = 659,067,881,472,000. 

 

c. Order still matters: There are P3,5 = 60 ways to choose three left-handers for the outfield and P6,10 = 

151,200 ways to choose six right-handers for the other positions. The total number of possibilities is  = 

(60)(151,200) = 9,072,000. 

 

 

34.  

a. Since order doesn’t matter, the number of ways to randomly select 5 keyboards from the 25 available 

is 
25

5

 
 
 

= 53,130. 

 

b. Sample in two stages. First, there are 6 keyboards with an electrical defect, so the number of ways to 

select exactly 2 of them is 
6

2

 
 
 

. Next, the remaining 5 – 2 = 3 keyboards in the sample must have 

mechanical defects; as there are 19 such keyboards, the number of ways to randomly select 3 is 
19

3

 
 
 

. 

So, the number of ways to achieve both of these in the sample of 5 is the product of these two counting 

numbers: 
6

2

 
 
 

19

3

 
 
 

= (15)(969) = 14,535.  
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c. Following the analogy from b, the number of samples with exactly 4 mechanical defects is 
19 6

4 1

  
  
  

, 

and the number with exactly 5 mechanical defects is 
19

5 0

6  
  
  

. So, the number of samples with at least 

4 mechanical defects is 
19 6

4 1

  
  
  

 + 
19

5 0

6  
  
  

, and the probability of this event is 

19 6 19 6

4 1 5 0

25

5

     
     

     

 
 
 

= 
34,884

53,130
= .657. (The denominator comes from a.) 

 

35.  

a. There are 
10

5

 
 
 

= 252 ways to select 5 workers from the day shift. In other words, of all the ways to 

select 5 workers from among the 24 available, 252 such selections result in 5 day-shift workers.  Since 

the grand total number of possible selections is 
24

5

 
 
 

 = 42504, the probability of randomly selecting 5 

day-shift workers (and, hence, no swing or graveyard workers) is 252/42504 = .00593. 

 

 

b. Similar to a, there are 
8

5

 
 
 

 = 56 ways to select 5 swing-shift workers and 
6

5

 
 
 

 = 6 ways to select 5 

graveyard-shift workers. So, there are 252 + 56 + 6 = 314 ways to pick 5 workers from the same shift. 

The probability of this randomly occurring is 314/42504 = .00739.    

 

c. P(at least two shifts represented) = 1 – P(all from same shift) = 1 – .00739 = .99261. 

       

 

d. There are several ways to approach this question. For example, let A1 = “day shift is unrepresented,”  

A2 = “swing shift is unrepresented,” and A3 = “graveyard shift is unrepresented.”  Then we want      

P(A1  A2  A3). 

N(A1) = N(day shift unrepresented) = N(all from swing/graveyard) =
8 6

5

 
 
 


 = 2002,  

since there are 8 + 6 = 14 total employees in the swing and graveyard shifts. Similarly,  

N(A2) = 
10 6

5

  
 
 

 = 4368 and N(A3) = 
10 8

5

  
 
 

 = 8568. Next, N(A1  A2) = N(all from graveyard) = 6 

from b. Similarly, N(A1  A3) = 56 and N(A2  A3) = 252. Finally, N(A1  A2  A3) = 0, since at least 

one shift must be represented. Now, apply the addition rule for 3 events: 

P(A1  A2  A3) =
2002 4368 8568 6 56 252 0

4250

14624

425044

     
  = .3441. 

 

36. There are 








2

5
= 10 possible ways to select the positions for B’s votes:  BBAAA, BABAA, BAABA, BAAAB, 

ABBAA, ABABA, ABAAB, AABBA, AABAB, and AAABB.  Only the last two have A ahead of B throughout 

the vote count.  Since the outcomes are equally likely, the desired probability is 2/10 = .20. 



Chapter 2:  Probability 

 62 

 

 

37.  

a. By the Fundamental Counting Principle, with n1 = 3, n2 = 4, and n3 = 5, there are (3)(4)(5) = 60 runs. 

 

b. With n1 = 1 (just one temperature), n2 = 2, and n3 = 5, there are (1)(2)(5) = 10 such runs. 

 

c. For each of the 5 specific catalysts, there are (3)(4) = 12 pairings of temperature and pressure. Imagine 

we separate the 60 possible runs into those 5 sets of 12. The number of ways to select exactly one run 

from each of these 5 sets of 12 is 

5
12

1

 
 
 

= 125. Since there are 








5

60
ways to select the 5 runs overall, 

the desired probability is 

5

5/ 1
12 60 60

/
1 5 5

2
     

     
     

= .0456. 

 

38.  

a. A sonnet has 14 lines, each of which may come from any of the 10 pages. Order matters, and we’re 

sampling with replacement, so the number of possibilities is 10 × 10 × … × 10 = 1014. 

 

b. Similarly, the number of sonnets you could create avoiding the first and last pages (so, only using lines 

from the middle 8 sonnets) is 814. Thus, the probability that a randomly-created sonnet would not use 

any lines from the first or last page is 814/1014 = .814 = .044. 

 

39. In a-c, the size of the sample space is N = 
5 6 4 15

3 3

   
 

 









= 455. 

a. There are four 23W bulbs available and 5+6 = 11 non-23W bulbs available. The number of ways to 

select exactly two of the former (and, thus, exactly one of the latter) is 
4 11

2 1

  
  
  

 = 6(11) = 66. Hence, 

the probability is 66/455 = .145. 

 

b. The number of ways to select three 13W bulbs is 
5

3

 
 
 

 = 10. Similarly, there are 
6

3

 
 
 

 = 20 ways to 

select three 18W bulbs and 
4

3

 
 
 

= 4 ways to select three 23W bulbs. Put together, there are 10 + 20 + 4 

= 34 ways to select three bulbs of the same wattage, and so the probability is 34/455 = .075. 

 

 

c. The number of ways to obtain one of each type is 
5 6 4

1 1 1

   
   
   

 = (5)(6)(4) = 120, and so the probability 

is 120/455 = .264. 

 

d. Rather than consider many different options (choose 1, choose 2, etc.), re-frame the problem this way: 

at least 6 draws are required to get a 23W bulb iff a random sample of five bulbs fails to produce a 

23W bulb. Since there are 11 non-23W bulbs, the chance of getting no 23W bulbs in a sample of size 5 

is 
11 15

/
5 5

   
   
   

 = 462/3003 = .154. 
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40.  

a. If the A’s were distinguishable from one another, and similarly for the B’s, C’s and D’s, then there 

would be 12! possible chain molecules.  Six of these are: 

A1A2A3B2C3C1D3C2D1D2B3B1  A1A3A2B2C3C1D3C2D1D2B3B1 

A2A1A3B2C3C1D3C2D1D2B3B1  A2A3A1B2C3C1D3C2D1D2B3B1 

A3A1A2B2C3C1D3C2D1D2B3B1  A3A2A1B2C3C1D3C2D1D2B3B1 

These 6 (=3!) differ only with respect to ordering of the 3 A’s.  In general, groups of 6 chain molecules 

can be created such that within each group only the ordering of the A’s is different.  When the A 

subscripts are suppressed, each group of 6 “collapses” into a single molecule (B’s, C’s and D’s are still 

distinguishable).   

At this point there are (12!/3!) different molecules.  Now suppressing subscripts on the B’s, C’s, and 

D’s in turn gives 
4

12
3

!

(
6 0

3!)
9,60  chain molecules. 

 

b. Think of the group of 3 A’s as a single entity, and similarly for the B’s, C’s, and D’s.  Then there are 4! 

= 24 ways to order these triplets, and thus 24 molecules in which the A’s are contiguous, the B’s, C’s, 

and D’s also.  The desired probability is 
24

.00006494
369,600

 . 

 

41.  

a. (10)(10)(10)(10) = 104 = 10,000.  These are the strings 0000 through 9999. 

 

b. Count the number of prohibited sequences. There are (i) 10 with all digits identical (0000, 1111, …, 

9999); (ii) 14 with sequential digits (0123, 1234, 2345, 3456, 4567, 5678, 6789, and 7890, plus these 

same seven descending); (iii) 100 beginning with 19 (1900 through 1999).  That’s a total of 10 + 14 + 

100 = 124 impermissible sequences, so there are a total of 10,000 – 124 = 9876 permissible sequences. 

The chance of randomly selecting one is just 
9876

10,000
= .9876. 

 

c. All PINs of the form 8xx1 are legitimate, so there are (10)(10) = 100 such PINs. With someone 

randomly selecting 3 such PINs, the chance of guessing the correct sequence is 3/100 = .03. 

 

d. Of all the PINs of the form 1xx1, eleven is prohibited: 1111, and the ten of the form 19x1. That leaves 

89 possibilities, so the chances of correctly guessing the PIN in 3 tries is 3/89 = .0337. 

 

42.  

a. If Player X sits out, the number of possible teams is 
3 4 4

1 2 2

   
   
   

= 108. If Player X plays guard, we 

need one more guard, and the number of possible teams is
3 4 4

1 21

   
   
   

= 72. Finally, if Player X plays 

forward, we need one more forward, and the number of possible teams is 
3 4 4

1 2 1

   
   
   

= 72. So, the 

total possible number of teams from this group of 12 players is 108 + 72 + 72 = 252. 

 

b. Using the idea in a, consider all possible scenarios. If Players X and Y both sit out, the number of 

possible teams is 
3 5 5

1 2 2

   
   
   

= 300. If Player X plays while Player Y sits out, the number of possible 
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teams is 
3 5 5

1 1 2

   
   
   

+
3 5 5

1 2 1

   
   
   

= 150 + 150 = 300. Similarly, there are 300 teams with Player X 

benched and Player Y in. Finally, there are three cases when X and Y both play: they’re both guards, 

they’re both forwards, or they split duties. The number of ways to select the rest of the team under 

these scenarios is 
3 5 5

1 0 2

   
   
   

+ 
3 5 5

1 2 0

   
   
   

 + 
3 5 5

1 1 1

   
   
   

= 30 + 30 + 75 = 135.  

 

Since there are 
15

5

 
 
 

= 3003 ways to randomly select 5 players from a 15-person roster, the probability 

of randomly selecting a legitimate team is
300 300 135

3003

 
=

735

3003
= .245. 

 

43. There are 
52

5

 
 
 

= 2,598,960 five-card hands. The number of 10-high straights is (4)(4)(4)(4)(4) = 45 = 1024 

(any of four 6s, any of four 7s, etc.). So, P(10 high straight) = 
1024

.000394
2,598,960

 . Next, there ten “types 

of straight: A2345, 23456, …, 910JQK, 10JQKA. So, P(straight) = 
1024

10 .00394
2,598,960

  . Finally, there 

are only 40 straight flushes: each of the ten sequences above in each of the 4 suits makes (10)(4) = 40. So, 

P(straight flush) = 
40

.00001539
2,598,960

 . 

 

44. 

























kn

n

kkn

n

knk

n

k

n

!)!(

!

)!(!

!
 

 

The number of subsets of size k equals the number of subsets of size n – k, because to each subset of size k 

there corresponds exactly one subset of size n – k: the n – k objects not in the subset of size k. The 

combinations formula counts the number of ways to split n objects into two subsets: one of size k, and one 

of size n – k. 
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Section 2.4 

 
45.  

a. P(A) =  .106 + .141 + .200 = .447, P(C) =.215 + .200 + .065 + .020 = .500, and P(A  C) = .200. 

 

b. P(A|C) = 400.
500.

200.

)(

)(




CP

CAP
.  If we know that the individual came from ethnic group 3, the 

probability that he has Type A blood is .40. P(C|A) = 
( )

( )

P A C

P A



 

=
.200

.447
= .447. If a person has Type A 

blood, the probability that he is from ethnic group 3 is .447. 

 

c. Define D = “ethnic group 1 selected.”   We are asked for P(D|B). From the table, P(DB) = .082 + 

.106 + .004 = .192 and P(B) = 1 – P(B) = 1 – [.008 + .018 + .065] = .909. So, the desired probability is 

P(D|B) = 211.
909.

192.

)(

)(






BP

BDP
.   

 

46. Let A be that the individual is more than 180 cm tall.  Let B be that the individual is a professional 

basketball player. Then  P(A|B) = the probability of the individual being more than 180 cm tall, knowing 

that the individual is a professional basketball player, while P(B|A) = the probability of the individual being 

a professional basketball player, knowing that the individual is more than 180 cm tall.   P(A|B) will be 

larger. Most professional basketball players are tall, so the probability of an individual in that reduced 

sample space being more than 180 cm tall is very large.  On the other hand, the number of individuals that 

are pro basketball players is small in relation to the number of males more than 180 cm tall. 

 

47.  

a. Apply the addition rule for three events: P(A  B  C) = .6 + .4 + .2 – .3 – .15 – .1 + .08 = .73. 

 

b. P(A  B  C′) = P(A  B) – P(A  B  C) = .3 – .08 = .22. 

 

c. P(B|A) = 
( ) .3

.50
( ) .6

P A B

P A


  and P(A|B) = 

( ) .3
.75

( ) .4

P A B

P B


  . Half of students with Visa cards also 

have a MasterCard, while three-quarters of students with a MasterCard also have a Visa card. 

 

d. P(A  B | C) = 
([ ] ) ( ) .08

( ) ( ) .2

P A B P A B

P C P C

C C 
 

 
= .40. 

e. P(A  B | C) = 
([ ] ) ([ [ )

( ) ( )

] ]P A B P A B

P C P C

C C C    
 . Use a distributive law: 

=
( ) ([

)

) ( ])

(

] [P C P CA B P A

P C

C B C     
= 

( ) (

( )

) ( )CP A B PP C CA

P

B

C

    
 = 

.15 .1 .08

.2

 
 = .85. 



Chapter 2:  Probability 

 66 

 

48.  

a. 2 1
2 1

1

( ) .06
( | )

( ) .12

P A A

A
A

P
P A


  = .50. The numerator comes from Exercise 26. 

b. 1 2 3 1 1 2 3
1 2 3 1

1 1

) ) .01
|

([ ]
)

( ) ( ) . 2
(

1

(P A PA A A A A
A A A

P

A
P A

A P A

    
     = .0833. The numerator 

simplifies because 1 2 3A A A  is a subset of A1, so their intersection is just the smaller event. 

 

c. For this example, you definitely need a Venn diagram. The seven pieces of the partition inside the 

three circles have probabilities .04, .05, .00, .02, .01, .01, and .01.  Those add to .14 (so the chance of 

no defects is .86).  

Let E = “exactly one defect.” From the Venn diagram, P(E) = .04 + .00 + .01 = .05. From the addition 

above, P(at least one defect) = 
1 2 3( )AP A A  = .14. Finally, the answer to the question is 

1 2 3
1 2 3

1 2 3 1 2 3

[ ) ) .05
)

) ) .14

( ] (
( |

( (

P E A P E
P E A

P A P A

A A
A A

A A A A

  
    

   
= .3571. The numerator 

simplifies because E is a subset of 
1 2 3A A A  . 

 

d. 3 1 2
3 1 2

1 2

[ ) .05
)

) .0
(

6

( ]
|

(

AP A A
P A A

P A
A

A

 





   = .8333. The numerator is Exercise 26(c), while the 

denominator is Exercise 26(b). 

 

49.  

a. P(small cup) = .14 + .20 = .34. P(decaf) = .20 + .10 + .10 = .40. 

 

b. P(decaf | small) = 
decaf )(small .20

(small) .34

P

P



= .588. 58.8% of all people who purchase a small cup of 

coffee choose decaf. 

c. P(small | decaf) = 
decaf )(small .20

(decaf ) .40

P

P



= .50. 50% of all people who purchase decaf coffee choose 

the small size. 

 

50.  

a. P(M  LS  PR) = .05, directly from the table of probabilities. 

 

b. P(M  Pr) = P(M  LS  PR) + P(M  SS  PR) = .05 + .07 = .12. 

 

c. P(SS) = sum of 9 probabilities in the SS table = .56. P(LS) = 1 – .56 = .44. 

 

d. From the two tables, P(M) = .08 + .07 + .12 + .10 + .05 + .07 = .49. P(Pr) = .02 + .07 + .07 + .02 + .05 

+ .02 = .25. 

e. P(M|SS  Pl) = 
( ) .08

.533
( ) .04 .08 .03

P

P


 





 

M SS Pl

SS Pl
. 

f. P(SS|M  Pl) = 
( ) .08

.444
( ) .08 .10

P

P

 
 

 

SS M Pl

M Pl
. P(LS|M  Pl) = 1 – P(SS|M  Pl) = 1 – .444 = 

.556. 
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51.  

a. Let A = child has a food allergy, and R = child has a history of severe reaction. We are told that P(A) = 

.08 and P(R | A) = .39. By the multiplication rule, P(A  R) = P(A) × P(R | A) = (.08)(.39) = .0312. 

 

b. Let M = the child is allergic to multiple foods. We are told that P(M | A) = .30, and the goal is to find 

P(M).  But notice that M is actually a subset of A: you can’t have multiple food allergies without 

having at least one such allergy! So, apply the multiplication rule again: 

P(M) = P(M  A) = P(A) × P(M | A) = (.08)(.30) = .024. 

 

52. We know that P(A1  A2) = .07 and P(A1  A2) = .01, and that P(A1) = P(A2) because the pumps are 

identical. There are two solution methods. The first doesn’t require explicit reference to q or r: Let A1 be 

the event that #1 fails and A2 be the event that #2 fails.   

Apply the addition rule: P(A1  A2) = P(A1) + P(A2) – P(A1  A2)  .07 = 2P(A1)  – .01  P(A1) = .04. 

 

Otherwise, we assume that P(A1) = P(A2) = q and that P(A1 | A2) = P(A2 | A1) = r (the goal is to find q). 

Proceed as follows:  .01 = P(A1  A2) = P(A1) P(A2 | A1) = qr and .07 = P(A1  A2) = 

1 2 1 2 1 2) (( )( )P A P AA A P A A      = .01 + q(1 – r) + q(1 – r)  q(1 – r) = .03. 

These two equations give 2q – .01 = .07, from which q = .04 (and r = .25). 

 

53. P(B|A) = 
)(

)(

)(

)(

AP

BP

AP

BAP



  (since B is contained in A, A  B = B) 

= 0833.
60.

05.


 
 

54.  

a. P(A2 | A1) = 50.
22.

11.

)(

)(

1

21 


AP

AAP
. If the firm is awarded project 1, there is a 50% chance they will 

also be awarded project 2. 

 

b. P(A2  A3 | A1) = 0455.
22.

01.

)(

)(

1

321 


AP

AAAP
. If the firm is awarded project 1, there is a 4.55% 

chance they will also be awarded projects 2 and 3. 

 

c. 
)(

)]()[(

)(

)]([
)|(

1

3121

1

321
132

AP

AAAAP

AP

AAAP
AAAP





  

682.
22.

15.

)(

)()()(

1

3213121 



AP

AAAPAAPAAP
. If the firm is awarded project 1, there is 

a 68.2% chance they will also be awarded at least one of the other two projects. 

 

d. 0189.
53.

01.

)(

)(
)|(

321

321
321321 






AAAP

AAAP
AAAAAAP . If the firm is awarded at least one 

of the projects, there is a 1.89% chance they will be awarded all three projects. 
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55. Let A = {carries Lyme disease} and B = {carries HGE}. We are told P(A) = .16, P(B) = .10, and P(A  B | 

A  B) = .10. From this last statement and the fact that AB is contained in AB,  

.10 = 
( )

( )

P A B

P A B




 P(A  B) = .10P(A  B) = .10[P(A) + P(B) – P(A  B)] = .10[.10 + .16 – P(A  B)]  

1.1P(A  B) = .026  P(A  B) = .02364. 

Finally, the desired probability is P(A | B) = 
( ) .02364

( ) .10

P A B

P B


 = .2364. 

 

 

56. 1
)(

)(

)(

)()(

)(

)(

)(

)(
)|()|( 










BP

BP

BP

BAPBAP

BP

BAP

BP

BAP
BAPBAP  

 

 

57. P(B | A) > P(B) iff P(B | A) + P(B′ | A) > P(B) + P(B′|A) iff 1 > P(B) + P(B′|A) by Exercise 56 (with the 

letters switched). This holds iff 1 – P(B) > P(B′ | A) iff P(B′) > P(B′ | A), QED. 

 

 

58. 
)(

)]()[(

)(

))[(
)|(

CP

CBCAP

CP

CBAP
CBAP







)(

)()()(

CP

CBAPCBPCAP 
  = P(A | 

C) + P(B | C) – P(A  B | C) 

 

59. The required probabilities appear in the tree diagram below. 

a. P(A2  B) = .21. 

 

b. By the law of total probability, P(B) = P(A1  B) + P(A2  B) + P(A3  B) = .455. 

 

c. Using Bayes’ theorem, P(A1 | B) = 264.
455.

12.

)(

)( 1 


BP

BAP
; P(A2 | B) = 462.

455.

21.
 ; P(A3 | B) = 1 – 

.264 – .462 = .274. Notice the three probabilities sum to 1. 

1 11
.4 .3 .12 ( ) ( ) ( | )P A B P A P B A    

)(21.6.35. 2 BAP 

)(125.5.25. 3 BAP 
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60. The tree diagram below shows the probability for the four disjoint options; e.g., P(the flight is discovered 

and has a locator) = P(discovered)P(locator | discovered) = (.7)(.6) = .42. 

 

a. P(not discovered | has locator) = 
(not discovered has locator) .03

.067
(has locator) .03 .42

P

P


 


. 

 

b. P(discovered | no locator) = 
(discovered no locator) .28

.509
(no locator) .55

P

P


  . 

 

61. The initial (“prior”) probabilities of 0, 1, 2 defectives in the batch are .5, .3, .2. Now, let’s determine the 

probabilities of 0, 1, 2 defectives in the sample based on these three cases. 

 If there are 0 defectives in the batch, clearly there are 0 defectives in the sample.  

P(0 def in sample | 0 def in batch) = 1. 

 If there is 1 defective in the batch, the chance it’s discovered in a sample of 2 equals 2/10 = .2, and the 

probability it isn’t discovered is 8/10 = .8.  

P(0 def in sample | 1 def in batch) = .8, P(1 def in sample | 1 def in batch) = .2. 

 If there are 2 defectives in the batch, the chance both are discovered in a sample of 2 equals 

2 1
.022

10 9
  ; the chance neither is discovered equals 

8 7
.622

10 9
  ; and the chance exactly 1 is 

discovered equals 1 – (.022 + .622) = .356. 

P(0 def in sample | 2 def in batch) = .622, P(1 def in sample | 2 def in batch) = .356,  

P(2 def in sample | 2 def in batch) = .022. 

 

These calculations are summarized in the tree diagram below. Probabilities at the endpoints are 

intersectional probabilities, e.g. P(2 def in batch  2 def in sample) = (.2)(.022) = .0044. 
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a. Using the tree diagram and Bayes’ rule, 

P(0 def in batch | 0 def in sample) = 578.
1244.24.5.

5.



 

P(1 def in batch | 0 def in sample) = 278.
1244.24.5.

24.



 

P(2 def in batch | 0 def in sample) = 144.
1244.24.5.

1244.



 

 

b. P(0 def in batch | 1 def in sample) = 0 

P(1 def in batch | 1 def in sample) = 457.
0712.06.

06.



 

P(2 def in batch | 1 def in sample) = 543.
0712.06.

0712.



 

 

 

62. Let B = blue cab was involved, G = B′ = green cab was involved, and W = witness claims to have seen a 

blue cab. Before any witness statements, P(B) = .15 and P(G). The witness’ reliability can be coded as 

follows: P(W | B) = .8 (correctly identify blue), P(W′ | G) = .8 (correctly identify green), and by taking 

complements P(W′ | B) = P(W | G) = .2 (the two ways to mis-identify a color at night). 

The goal is to determine P(B | W), the chance a blue cab was involved given that’s what the witness claims 

to have seen. Apply Bayes’ Theorem: 

( ) ( | ) (.15)(.8)
( | )

( ) ( | ) ( ) ( | ) (.15)(.8) (.85)(.2)

P B P W B
P B W

P B P W B P B P W B
 

  
 = .4138. 

The “posterior” probability that the cab was really blue is actually less than 50%.  That’s because there are 

so many more green cabs on the street, that it’s more likely the witness mis-identified a green cab (.85 × .2) 

than that the witness correctly identified a blue cab (.15 × .8). 

 

63.  

a.  

 
b. From the top path of the tree diagram, P(A  B  C) = (.75)(.9)(.8) = .54. 

 

c. Event B  C occurs twice on the diagram: P(B  C) = P(A  B  C) + P(A  B  C) = .54 + 

(.25)(.8)(.7) = .68. 
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d. P(C) = P(A  B  C) + P(A  B  C) + P(A  B  C) + P(A  B  C) = .54 + .045 + .14 + .015 = 

.74. 

e. Rewrite the conditional probability first: P(A | B  C) = 7941.
68.

54.

)(

)(






CBP

CBAP
. 

 

 

64. A tree diagram can help. We know that P(short) = .6, P(medium) = .3, P(long) = .1; also, P(Word | short) = 

.8, P(Word | medium) = .5, P(Word | long) = .3. 

 

a. Use the law of total probability: P(Word) = (.6)(.8) + (.3)(.5) + (.1)(.3) = .66. 

 

b. P(small | Word) = 
(small Word) (.6)(.8)

(Word) .66

P

P


 = .727. Similarly, P(medium | Word) = 

(.3)(.5)

.66
= .227, 

and P(long | Word) = .045. (These sum to .999 due to rounding error.) 

 

65. A tree diagram can help. We know that P(day) = .2, P(1-night) = .5, P(2-night) = .3; also, P(purchase | day) 

= .1, P(purchase | 1-night) = .3, and P(purchase | 2-night) = .2. 

 

Apply Bayes’ rule: e.g., P(day | purchase) =  
(day purchase) (.2)(.1)

(purchase) (.2)(.1) (.5)(.3) (.3)(.2)

P

P




 
  =

.02

.23
= .087. 

Similarly, P(1-night | purchase) = 
(.5)(.3)

.23
= .652 and P(2-night | purchase) = .261. 

 

66. Let E, C, and L be the events associated with e-mail, cell phones, and laptops, respectively. We are told 

P(E) = 40%, P(C) = 30%, P(L) = 25%, P(EC) = 23%, P(E′C′L′) = 51%,   P(E | L) = 88%, and P(L | 

C) = 70%. 

 

a. P(C | E) = P(E  C)/P(E) = .23/.40 = .575. 

 

b. Use Bayes’ rule: P(C | L) = P(C  L)/P(L) = P(C)P(L | C)/P(L) = .30(.70)/.25 = .84. 

 

c. P(C|E  L) = P(C  E  L)/P(E  L).  

For the denominator, P(E  L) = P(L)P(E | L) = (.25)(.88) = .22.  

For the numerator, use P(ECL) = 1 – P(E′C′L′) = 1 – .51 = .49 and write 

P(ECL) = P(C) + P(E) + P(L) – P(EC) – P(CL) – P(EL) + P(CEL) 

 .49 = .30 + .40 + .25 – .23 – .30(.70) – .22 + P(CEL)  P(CEL) = .20. 

So, finally, P(C|E  L) = .20/.22 = .9091. 

 

 

67. Let T denote the event that a randomly selected person is, in fact, a terrorist. Apply Bayes’ theorem, using 

P(T) = 1,000/300,000,000 = .0000033: 

P(T | +) = 
( ) ( | )

( ) ( | ) ( ) ( | )

P T P T

P T P T P T P T



   
= 

)999.1)(0000033.1()99)(.0000033(.

)99)(.0000033(.


= .003289. That is to 

say, roughly 0.3% of all people “flagged” as terrorists would be actual terrorists in this scenario. 
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68. Let’s see how we can implement the hint. If she’s flying airline #1, the chance of 2 late flights is 

(30%)(10%) = 3%; the two flights being “unaffected” by each other means we can multiply their 

probabilities. Similarly, the chance of 0 late flights on airline #1 is (70%)(90%) = 63%. Since percents add 

to 100%, the chance of exactly 1 late flight on airline #1 is 100% – (3% + 63%) = 34%. A similar approach 

works for the other two airlines: the probability of exactly 1 late flight on airline #2 is 35%, and the chance 

of exactly 1 late flight on airline #3 is 45%. 

 

The initial (“prior”) probabilities for the three airlines are P(A1) = 50%, P(A2) = 30%, and P(A3) = 20%. 

Given that she had exactly 1 late flight (call that event B), the conditional (“posterior”) probabilities of the 

three airlines can be calculated using Bayes’ Rule:  

 

2 2 3

1 1
1

1 1 3

( ) ( | ) (.5)(.34)
| )

( ) ( | ) ( ) ( | ) ( ) ( | ) (.5)(.34) (.3)(.35) (.2)(.45)
(

P A P B A
B

P A P B A P A P B A P A P
P A

B A
 

   
= 

.170

.365
= 

.4657; 

2 2
2

2 31 321

( ) ( | ) (.3)(.35)
| )

( ) ( | ) ( ) ( | ) ( ) ( | ) .3 5
(

6

P A P B A
B

P A P B A P A P B A P A P
P A

B A
 

 
= .2877; and 

3 3
3

2 31 321

( ) ( | ) (.2)(.45)
| )

( ) ( | ) ( ) ( | ) ( ) ( | ) .3 5
(

6

P A P B A
B

P A P B A P A P B A P A P
P A

B A
 

 
= .2466. 

Notice that, except for rounding error, these three posterior probabilities add to 1. 

 

The tree diagram below shows these probabilities. 
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69. The tree diagram below summarizes the information in the exercise (plus the previous information in 

Exercise 59). Probabilities for the branches corresponding to paying with credit are indicated at the far 

right. (“extra” = “plus”) 

a. P(plus  fill  credit) = (.35)(.6)(.6) = .1260. 

 

b. P(premium  no fill  credit) = (.25)(.5)(.4) = .05. 

 

c. From the tree diagram, P(premium  credit) = .0625 + .0500 = .1125. 

 

d. From the tree diagram, P(fill  credit) = .0840 + .1260 + .0625 = .2725. 

 

e. P(credit) = .0840 + .1400 + .1260 + .0700 + .0625 + .0500 = .5325. 

 

f. P(premium | credit) = 
(premium credit) .1125

.2113
(credit) .5325

P

P


  . 
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Section 2.5 

 

70. Using the definition, two events A and B are independent if P(A | B) = P(A); 

P(A | B) = .6125; P(A) = .50; .6125  .50, so A and B are not independent. 

Using the multiplication rule, the events are independent if P(A  B)=P(A)P(B); 

P(A  B) = .25; P(A)P(B) = (.5)(.4) = .2.  .25  .2, so A and B are not independent. 

 

71.  

a. Since the events are independent, then A and B are independent, too. (See the paragraph below 

Equation 2.7.) Thus, P(B|A) = P(B) = 1 – .7 = .3. 

 

b. Using the addition rule, P(A  B) = P(A) + P(B) – P(A  B) =.4 + .7 – (.4)(.7) = .82. Since A and B are 

independent, we are permitted to write P(A  B) = P(A)P(B) = (.4)(.7). 

 

c. P(AB | A  B) = 
( ( )) ( ( ) ( ) (.4)(1 .7) .12

.146
( ) ( )

)

( ) .8 .822

P A PP AB A B P AB

P A B

B

P AP A B B

  
    








. 

 

 

72. P(A1  A2) = .11 while P(A1)P(A2) = .055, so A1 and A2 are not independent. 

P(A1  A3) = .05 while P(A1)P(A3) = .0616, so A1 and A3 are not independent. 

P(A2  A3) = .07 and P(A2)P(A3) = .07, so A2 and A3 are independent. 

 

 

73. From a Venn diagram, P(B) = P(A  B) + P(A  B) = P(B)  P(A  B) = P(B) –  P(A  B). If A and B 

are independent, then P(A  B) = P(B) – P(A)P(B) = [1 – P(A)]P(B) = P(A)P(B). Thus, A′ and B are 

independent. 

Alternatively, 
( ) ( ) ( )

( | )
( ) ( )

P A B P B P A B
P A B

P B P B

  
   = 

( ) ( ) ( )

( )

P B P A P B

P B



 

= 1 – P(A) = P(A′). 

 

 

74. Using subscripts to differentiate between the selected individuals,  

P(O1  O2) = P(O1)P(O2) = (.45)(.45) = .2025. 

P(two individuals match) = P(A1  A2) + P(B1  B2) + P(AB1  AB2) + P(O1O2) =  

.402 + .112 + .042 + .452 = .3762. 

 

75. Let event E be the event that an error was signaled incorrectly.   

We want P(at least one signaled incorrectly) = P(E1  …  E10). To use independence, we need 

intersections, so apply deMorgan’s law: = P(E1  … E10) = 1 – 1 10)(P EE   . P(E) = 1 – .05 = .95, 

so for 10 independent points, 1 10)(P EE   = (.95)…(.95) = (.95)10. Finally, P(E1  E2   … E10) =    

1 – (.95)10 = .401.   Similarly, for 25 points, the desired probability is 1 – (P(E))25 = 1 – (.95)25 = .723. 
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76. Follow the same logic as in Exercise 75: If the probability of an event is p, and there are n independent 

“trials,” the chance this event never occurs is (1 – p)n, while the chance of at least one occurrence is            

1 – (1 – p)n. With p = 1/9,000,000,000 and n = 1,000,000,000, this calculates to 1 – .9048 = .0952.   

 

Note: For extremely small values of p, (1 – p)n ≈ 1 – np. So, the probability of at least one occurrence under 

these assumptions is roughly 1 – (1 – np) = np.  Here, that would equal 1/9. 

 

77. Let p denote the probability that a rivet is defective. 

 

a. .15 = P(seam needs reworking) = 1 – P(seam doesn’t need reworking) = 

1 – P(no rivets are defective) = 1 – P(1st isn’t def  …  25th isn’t def) = 

1 – (1 – p)…(1 – p) = 1 – (1 – p)25.  

Solve for p: (1 – p)25 = .85  1 – p = (.85)1/25  p = 1 – .99352 = .00648.  

 

b. The desired condition is .10 = 1 – (1 – p)25. Again, solve for p: (1 – p)25 = .90   

p = 1 – (.90)1/25 = 1 – .99579 = .00421.  

 

 

78. P(at least one opens) = 1 – P(none open) = 1 – (.04)5 = .999999897. 

P(at least one fails to open) = 1 – P(all open) = 1 – (.96)5 = .1846. 

 

 

79. Let A1 = older pump fails, A2 = newer pump fails, and x = P(A1  A2).  The goal is to find x. From the Venn 

diagram below, P(A1) = .10 + x and P(A2) = .05 + x. Independence implies that x = P(A1  A2) = P(A1)P(A2) 

= (.10 + x)(.05 + x) .  The resulting quadratic equation, x2 – .85x + .005 = 0, has roots x = .0059 and x = 

.8441.  The latter is impossible, since the probabilities in the Venn diagram would then exceed 1.  

Therefore, x = .0059. 

 

 

.10 .15 x 

A1 A2 
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80. Let Ai denote the event that component #i works (i = 1, 2, 3, 4). Based on the design of the system, the 

event “the system works” is 1 2 3 4) ( )( A A AA    . We’ll eventually need 1 2)(P A A , so work that out 

first: 1 2 1 2 1 2) ( ) ( ) ( ) (.9) (.9) (.9)(.9 .( ) 99A P A P A P A AP A          . The third term uses 

independence of events. Also, 3 4( )P A A = (.8)(.8) = .64, again using independence.  

 

Now use the addition rule and independence for the system: 

 

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

) ( )) ( ) ( ) ) ( ))

( ) ( ) ) ( )

(.99) (.64) (.99)(.6

(( ((

4) .9964

(

A A A P A P A A A A A

P A P A A

P A A P A

A AP P AA A

          

       

   

 

(You could also use deMorgan’s law in a couple of places.) 

 

81. Using the hints, let P(Ai) = p, and x = p2. Following the solution provided in the example, 

P(system lifetime exceeds t0) = p2 + p2 – p4 = 2p2 – p4 = 2x – x2.  Now, set this equal to .99:  

2x – x2 = .99  x2 – 2x + .99 = 0  x = 0.9 or 1.1  p = 1.049 or .9487.  Since the value we want is a 

probability and cannot exceed 1, the correct answer is p = .9487. 

 
 

82. A = {(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)}  P(A) = 6
36

1
6

 ; B = {(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)}    P(B) = 
6
1 ; 

and C = {(1,6)(2,5)(3,4)(4,3)(5,2)(6,1)}  P(C) = 
6
1 .    

AB = {(3,4)}  P(AB) = 
36
1  = P(A)P(B); AC = {(3,4)}  P(AC) = 

36
1 = P(A)P(C); and BC = 

{(3,4)}  P(BC) = 
36
1 = P(B)P(C). Therefore, these three events are pairwise independent. 

However, ABC = {(3,4)}  P(ABC) = 
36
1 , while P(A)P(B)P(C) =  

 
= 1 1 1 1

6 6 6 216
   , so P(ABC) ≠ 

P(A)P(B)P(C) and these three events are not mutually independent. 

 

 

83. We’ll need to know P(both detect the defect) = 1 – P(at least one doesn’t) = 1 – .2 = .8. 

 

a. P(1st detects  2nd doesn’t) = P(1st detects) – P(1st does  2nd does) = .9 – .8 = .1. 

Similarly, P(1st doesn’t  2nd does) = .1, so P(exactly one does)= .1 + .1= .2. 

 

b. P(neither detects a defect) = 1 – [P(both do) + P(exactly 1 does)] = 1 – [.8+.2] = 0. That is, under this 

model there is a 0% probability neither inspector detects a defect. As a result, P(all 3 escape) = 

(0)(0)(0) = 0. 
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84. We’ll make repeated use of the independence of the Ais and their complements. 

a. 1 2 3 1 2 3) ( ) ( ) ( )( A A P A P AA P AP    = (.95)(.98)(.80) = .7448. 

 

b. This is the complement of part a, so the answer is 1 – .7448 = .2552. 

 

c. 1 2 3 1 2 3) ( ) ( ) (( )A A P A P A P AP A        = (.05)(.02)(.20) = .0002. 

 

d. 1 2 3 1 2 3) ( ) ( ( )( )A A P A P A PA AP      = (.05)(.98)(.80) = .0392. 

 

e. 1 2 3 1 2 3 1 2 3] ] ])([ [ [A A AP A A AA A A         = (.05)(.98)(.80) + (.95)(.02)(.80) + (.95)(.98)(.20) 

= .07302. 

 

f. This is just a little joke — we’ve all had the experience of electronics dying right after the warranty 

expires!  

 

85.  

a. Let D1 = detection on 1st fixation, D2 = detection on 2nd fixation. 

P(detection in at most 2 fixations) = P(D1) + 1 2( )P D D ; since the fixations are independent,  

P(D1) + 1 2( )P D D = P(D1) + 1( )P D P(D2) = p + (1 – p)p = p(2 – p). 

 

b. Define D1, D2, … , Dn as in a.  Then P(at most n fixations) = 

P(D1) + 1 2( )P D D + 1 2 3( )D DP D  + … + 1 2 1( )n nP D D DD 
     =  

p + (1 – p)p + (1 – p)2p + … + (1 – p)n–1p = p[1 + (1 – p) + (1 – p)2 + … + (1 – p)n–1] = 

1 (1 )
1 (1 )

1 (1 )
·

n
np

p p
p

 
  

 
. 

Alternatively, P(at most n fixations) = 1 – P(at least n+1 fixations are required) = 

1 – P(no detection in 1st n fixations) = 1 – 1 2 )( nD DP D     = 1 – (1 – p)n. 

 

c. P(no detection in 3 fixations) = (1 – p)3. 

 

d. P(passes inspection) = P({not flawed}  {flawed and passes}) 

= P(not flawed) + P(flawed and passes) 

= .9 + P(flawed) P(passes | flawed) = .9 + (.1)(1 – p)3. 

 

e. Borrowing from d, P(flawed | passed) = 
3

3

(flawed passed) .1(1 )

(passed) .9 .1(1 )

P p

P p

 


 
. For p = .5,  

P(flawed | passed) = 
3

3

.1(1 .5)
.0137

.9 .1(1 .5)




 
. 
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86.  

a. P(A) = 
2,000

10,000
= .2. Using the law of total probability, ( ) ( ) ( | ) ( ) ( | )P B P A P B A P A P B A    = 

1,999 2,000
(.2) (.8)

9,999 9,999
 = .2 exactly. That is, P(B) = P(A) = .2. Finally, use the multiplication rule: 

1,999
) ( ) ( | ) (.2)

9,999
( B P A P B AP A    = .039984. Events A and B are not independent, since P(B) = 

.2 while
1,999

| ) .19992
9 999

(
,

P B A   , and these are not equal. 

 

b. If A and B were independent, we’d have ) ( ) ( ) (.2)(.2) .0( 4B P A P BP A     . This is very close to 

the answer .039984 from part a. This suggests that, for most practical purposes, we could treat events 

A and B in this example as if they were independent. 

 

c. Repeating the steps in part a, you again get P(A) = P(B) = .2. However, using the multiplication rule, 

2 1
) ( ) ( | )

10
(

9
B P A P B AP A     =.0222. This is very different from the value of .04 that we’d get 

if A and B were independent!  

 

The critical difference is that the population size in parts a-b is huge, and so the probability a second 

board is green almost equals .2 (i.e., 1,999/9,999 = .19992 ≈ .2). But in part c, the conditional 

probability of a green board shifts a lot: 2/10 = .2, but 1/9 = .1111. 

 

87.  

a. Use the information provided and the addition rule:  

P(A1  A2) = P(A1) + P(A2) – P(A1  A2)  P(A1  A2) = P(A1) + P(A2) – P(A1  A2) = .55 + .65 – .80 

= .40. 

 

b. By definition, 2 3
2 3

3

( ) .40
( |

( ) .70
)

P A A
A

P A
P A


 = .5714. If a person likes vehicle #3, there’s a 57.14% 

chance s/he will also like vehicle #2. 

 

c. No. From b, 2 3( )|P A A = .5714 ≠ P(A2) = .65. Therefore, A2 and A3 are not independent. Alternatively, 

P(A2  A3) = .40 ≠ P(A2)P(A3) = (.65)(.70) = .455. 

 

d. The goal is to find 2 3 1| )( AP A A , i.e. 2 3 1

1

([ ] )

( )

A AP A

P A

 


. The denominator is simply 1 – .55 = .45. 

There are several ways to calculate the numerator; the simplest approach using the information 

provided is to draw a Venn diagram and observe that 2 3 1 1 2 3 1) (([ (] ) )A A P A A PA A AP       = 

.88 – .55 = .33. Hence, 2 3 1| )( AP A A  = 
.33

.45
= .7333. 
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88. Let D = patient has disease, so P(D) = .05. Let ++ denote the event that the patient gets two independent, 

positive tests. Given the sensitivity and specificity of the test, P(++ | D) = (.98)(.98) = .9604, while           

P(++ | D′) = (1 – .99)(1 – .99) = .0001. (That is, there’s a 1-in-10,000 chance of a healthy person being mis-

diagnosed with the disease twice.) Apply Bayes’ Theorem: 

 

( ) ( | ) (.05)(.9604)
( | )

( ) ( | ) ( ) ( | ) (.05)(.9604) (.95)(.0001)

P D P D
P D

P D P D P D P D


  

    
 = .9980 

 

 

89. The question asks for P(exactly one tag lost | at most one tag lost) = 1 2 1 2 1 2((( ) ))) | (C C CC CP C      . 

Since the first event is contained in (a subset of) the second event, this equals 

1 2 1 2

1 2

(( )

)(

( )

( )

)C C

C

P C

P

C

C

  




= 1 2 1 2 1 2 1 2

1 2 1 2

( ( (

1

) ( ) ) ( ) ) ( )

) ( )( 1 ) (

P P CC C P C C P C P CP C

P C P CC P C




 

     


by independence = 

2 21

(1 ) (1 ) 2 (1 ) 2

1 1

      

  









 




. 
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Supplementary Exercises 

 
90.  

a. 
10

3

 
 
 

= 120. 

 

b. There are 9 other senators from whom to choose the other two subcommittee members, so the answer 

is 1 × 
9

2

 
 
 

= 36. 

 

c. There are 120 possible subcommittees. Among those, the number which would include none of the 5 

most senior senators (i.e., all 3 members are chosen from the 5 most junior senators) is 
5

3

 
 
 

 = 10. 

Hence, the number of subcommittees with at least one senior senator is 120 – 10 = 110, and the chance 

of this randomly occurring is 110/120 = .9167. 

 

d. The number of subcommittees that can form from the 8 “other” senators is 
8

3

 
 
 

 = 56, so the 

probability of this event is 56/120 = .4667. 

 

 

91.  

a. P(line 1) = 
500

1500
= .333;   

P(crack) = 
     .50 500 .44 400 .40 600 666

1500 1500

 
 = .444. 

 

b. This is one of the percentages provided: P(blemish | line 1) = .15. 

 

c. P(surface defect) =
     .10 500 .08 400 .15 600 172

1500 1500

 
 ; 

P(line 1  surface defect) = 
 .10 500 50

1500 1500
 ; 

so, P(line 1 | surface defect) = 
50 /1500

172 /

5

1 00 25

0

17
 = .291. 

 

92.  

a. He will have one type of form left if either 4 withdrawals or 4 course substitutions remain. This means 

the first six were either 2 withdrawals and 4 subs or 6 withdrawals and 0 subs; the desired probability 

is 

6 4 6

2 4 6

1

4

0

0

6

     
     

     

 
 
 

 = 
16

210
=.0762. 
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b. He can start with the withdrawal forms or the course substitution forms, allowing two sequences: W-C-

W-C or C-W-C-W. The number of ways the first sequence could arise is (6)(4)(5)(3) = 360, and the 

number of ways the second sequence could arise is (4)(6)(3)(5) = 360, for a total of 720 such 

possibilities. The total number of ways he could select four forms one at a time is P4,10 = (10)(9)(8)(7) 

= 5040. So, the probability of a perfectly alternating sequence is 720/5040 = .143. 

 

93. Apply the addition rule: P(AB) = P(A) + P(B) – P(A  B)  .626 = P(A) + P(B) – .144. Apply 

independence: P(A  B) = P(A)P(B) = .144.  

So, P(A) + P(B) = .770 and P(A)P(B) = .144.    

Let x = P(A) and y = P(B). Using the first equation, y = .77 – x, and substituting this into the second 

equation yields x(.77 –  x) = .144 or x2 – .77x + .144 = 0.  Use the quadratic formula to solve:   

x =
2.77 ( .77) (4)(1)(.144) .77 .13

2(1) 2

   
  = .32 or .45. Since x = P(A) is assumed to be the larger 

probability, x = P(A) = .45 and y = P(B) = .32. 

 

 

94. The probability of a bit reversal is .2, so the probability of maintaining a bit is .8. 

a. Using independence, P(all three relays correctly send 1) = (.8)(.8)(.8) = .512. 

 

b. In the accompanying tree diagram, each .2 indicates a bit reversal (and each .8 its opposite). There are 

several paths that maintain the original bit: no reversals or exactly two reversals (e.g., 1 → 1 → 0 → 1, 

which has reversals at relays 2 and 3). The total probability of these options is .512 + (.8)(.2)(.2) + 

(.2)(.8)(.2) + (.2)(.2)(.8) = .512 + 3(.032) = .608. 

 

 

c. Using the answer from b, P(1 sent | 1 received) = 
1 received)(1 sent

(1 received)

P

P


= 

(1 received | 1 sent)

(1 received | 1 sent)

(1 sent)

(1 sent) (0 se (1 received n | 0 sen )t) t

P

PP P

P

P
= 

(.7)(.608) .4256

(.7)(.608) (.3)(.392) .5432



= 

.7835. 

In the denominator, P(1 received | 0 sent) = 1 – P(0 received | 0 sent) = 1 – .608, since the answer from 

b also applies to a 0 being relayed as a 0. 
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95.  

a. There are 5! = 120 possible orderings, so P(BCDEF) = 1
120

= .0833. 

 

b. The number of orderings in which F is third equals 431*21 = 24 (*because F must be here),  so 

P(F is third) = 24
120

= .2.  Or more simply, since the five friends are ordered completely at random, there 

is a ⅕ chance F is specifically in position three. 

 

c. Similarly, P(F last) = 
4 3 2 1 1

120

   
= .2. 

 

d. P(F hasn’t heard after 10 times) = P(not on #1  not on #2  …   not on #10) = 

10
4 4

5 5

4

5

 
    

 
= 

.1074. 

 

 

96. Palmberg equation: 
( / *)

( )
1 ( / *)

d

c c
c

c c
P







 

a. 
( * / *) 1 1

( *) .5
1 ( * / *) 1 1 1 1

d

c c
c

c c
P

 

 
   

  
. 

 

b. The probability of detecting a crack that is twice the size of the “50-50” size c* equals 

(2 * / *) 2
(2 *)

1 (2 * / *) 1 2
dP

c c
c

c c

 

 
 

 
. When β = 4, 

4

4

2 16
(2 *)

1 2 17
dP c  


= .9412. 

 

c. Using the answers from a and b, P(exactly one of two detected) = P(first is, second isn’t) + P(first 

isn’t, second is) = (.5)(1 – .9412) + (1 – .5)(.9412) = .5. 

 

d. If c = c*, then Pd(c) = .5 irrespective of β. If c < c*, then c/c* < 1 and Pd(c) → 
0

0 1
= 0 as β → ∞. 

Finally, if c > c* then c/c* > 1 and, from calculus,  Pd(c) → 1 as β → ∞. 

 

97. When three experiments are performed, there are 3 different ways in which detection can occur on exactly 

2 of the experiments: (i) #1 and #2 and not #3; (ii) #1 and not #2 and #3; and (iii) not #1 and #2 and #3.  If 

the impurity is present, the probability of exactly 2 detections in three (independent) experiments is 

(.8)(.8)(.2) + (.8)(.2)(.8) + (.2)(.8)(.8) = .384.  If the impurity is absent, the analogous probability is 

3(.1)(.1)(.9) = .027.  Thus, applying Bayes’ theorem, P(impurity is present | detected in exactly 2 out of 3) 

= 
(detected in exactly 2 present)

(detected in exactly 2)

P

P


=

(.384)(.4)

(.384)(.4) (.027)(.6)
= .905. 

 



Chapter 2:  Probability 

 83 

 

98. Our goal is to find P(A  B  C  D  E). We’ll need all of the following probabilities: 

P(A) = P(Allison gets her calculator back) = 1/5. This is intuitively obvious; you can also see it by writing 

out the 5! = 120 orderings in which the friends could get calculators (ABCDE, ABCED, …, EDCBA) and 

observe that 24 of the 120 have A in the first position. So, P(A) = 24/120 = 1/5. By the same reasoning, 

P(B) = P(C) = P(D) = P(E) = 1/5. 

P(A  B) = P(Allison and Beth get their calculators back) = 1/20. This can be computed by considering all 

120 orderings and noticing that six — those of the form ABxyz — have A and B in the correct positions. 

Or, you can use the multiplication rule: P(A  B) = P(A)P(B | A) = (1/5)(1/4) = 1/20.  All other pairwise 

intersection probabilities are also 1/20. 

P(A  B  C) = P(Allison and Beth and Carol get their calculators back) = 1/60, since this can only occur 

if two ways — ABCDE and ABCED — and 2/120 = 1/60. So, all three-wise intersections have probability 

1/60. 

P(A  B  C  D) = 1/120, since this can only occur if all 5 girls get their own calculators back. In fact, all 

four-wise intersections have probability 1/120, as does P(A  B  C  D  E) — they’re the same event. 

 

Finally, put all the parts together, using a general inclusion-exclusion rule for unions: 

) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( )

1 1 1 1 1 1 1 1 1 76
5 10 10

(

5 1 .633
5 20 60 120 2 6120 120 24 1 02

B C D E P A P B P C P D P E

P A B P A C P D E

P A B C P C D E

P A B C D P B C D E

P A B C D E

P A        

      

      

        

    

               

  

 

The final answer has the form 
1 1 1 1 1 1 1 1

2 6 24 1! 2! 3! 4! 5!
1         . Generalizing to n friends, the 

probability at least one will get her own calculator back is 
11 1 1 1 1

( 1)
1! 2! 3! 4! !

n

n

      . 

 

When n is large, we can relate this to the power series for ex evaluated at x = –1: 

0

2 3

1

1

1! 2! 3!

1 1 1 1 1 1
1

1! 2! 3! 1! 2! 3!

1 1 1
1

1! 2!

1
!

1

3!

x

k

kx x x

e

e
k

x

e









   

 
         

 

 

 

 



 





  

So, for large n, P(at least one friend gets her own calculator back) ≈ 1 – e–1 = .632. Contrary to intuition, 

the chance of this event does not converge to 1 (because “someone is bound to get hers back”) or to 0 

(because “there are just too many possible arrangements”). Rather, in a large group, there’s about a 63.2% 

chance someone will get her own item back (a match), and about a 36.8% chance that nobody will get her 

own item back (no match).  
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99. Refer to the tree diagram below. 

 

a. P(pass inspection) = P(pass initially  passes after recrimping) =  

P(pass initially) + P(fails initially  goes to recrimping  is corrected after recrimping) = 

.95 + (.05)(.80)(.60) (following path “bad-good-good” on tree diagram) = .974. 

 

b. P(needed no recrimping | passed inspection) = 
(passed initially)

(passed inspection)

P

P
= 

.95
.9754

.974
 . 

 

 

100.  

a. First, the probabilities of the Ai are P(A1) = P(JJ) = (.6)2 = .36; P(A2) = P(MM) = (.4)2 = .16; and              

P(A3) = P(JM or MJ) = (.6)(.4) + (.4)(.6) = .48.    

Second, P(Jay wins | A1) = 1, since Jay is two points ahead and, thus has won; P(Jay wins | A2) = 0, 

since Maurice is two points ahead and, thus, Jay has lost; and P(Jay wins | A3) = p, since at that 

moment the score has returned to deuce and the game has effectively started over. Apply the law of 

total probability: 

  P(Jay wins) = P(A1)P(Jay wins | A1) + P(A2)P(Jay wins | A2) + P(A3)P(Jay wins | A3) 

                  p = (.36)(1) + (.16)(0) + (.48)(p) 

Therefore, p = .36 + .48p; solving for p gives p = 
.36

1 .48
 = .6923. 

 

b. Apply Bayes’ rule: P(JJ | Jay wins) = 
( ) (Jay wins | )

(Jay wins)

(.36)(1)

.6923

P JJ P JJ

P
  = .52. 

 

 

101. Let A = 1st functions, B = 2nd functions, so P(B) = .9, P(A  B) = .96, P(A  B)=.75.  Use the addition rule: 

P(A  B) = P(A) + P(B) – P(A  B)  .96 = P(A) + .9 – .75  P(A) = .81. 

Therefore, P(B | A) = 
( ) .75

( ) .81

P B A

P A


 = .926. 
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102.  

a. P(F) = 919/2026 = .4536.  P(C) = 308/2026 = .1520. 

 

b. P(F  C) = 110/2026 = .0543.  Since P(F) × P(C) = .4536 × .1520 = .0690 ≠ .0543, we find that 

events F and C are not independent. 

 

c. P(F | C) = P(F  C)/P(C) = 110/308 = .3571. 

 

d. P(C | F) = P(C  F)/P(F) = 110/919 = .1197. 

 

e. Divide each of the two rows, Male and Female, by its row total. 

 

 Blue Brown Green Hazel 

Male .3342 .3180 .1789 .1689 

Female .3906 .3156 .1197 .1741 

 

According to the data, brown and hazel eyes have similar likelihoods for males and females. However, 

females are much more likely to have blue eyes than males (39% versus 33%) and, conversely, males 

have a much greater propensity for green eyes than do females (18% versus 12%). 

 

103. A tree diagram can help here. 

a. P(E1  L) = P(E1)P(L | E1) = (.40)(.02) = .008. 

 

b. The law of total probability gives P(L) = ∑ P(Ei)P(L | Ei) =  (.40)(.02) + (.50)(.01) + (.10)(.05) = .018. 

 

c. 1 1| ) 1 ( )( |L P LP E E   = 1 )(
1

( )

P E

P L

L




 = 1 1) |(

1 ( )

( )
1

P L EP E

P L





= 

(.40)(.98)
1

1 .018



= .601. 

 

 

104. Let B denote the event that a component needs rework.   By the law of total probability, 

P(B) = ∑ P(Ai)P(B | Ai) = (.50)(.05) + (.30)(.08) + (.20)(.10) = .069. 

Thus, P(A1 | B) = 
(.50)(.05)

.069  

= .362, P(A2 | B) = 
(.30)(.08)

.069
= .348, and P(A3 | B) = .290.  

 

 

105. This is the famous “Birthday Problem” in probability. 

a. There are 36510 possible lists of birthdays, e.g. (Dec 10, Sep 27, Apr 1, …). Among those, the number 

with zero matching birthdays is P10,365 (sampling ten birthdays without replacement from 365 days. So, 

P(all different) = 
10

10,365

10

(365)(364) (356)

365 (365)

P
 = .883. P(at least two the same) = 1 – .883 = .117. 
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b. The general formula is P(at least two the same) = 1 – 
,365

365

k

k

P
. By trial and error, this probability equals 

.476 for k = 22 and equals .507 for k = 23. Therefore, the smallest k for which k people have at least a 

50-50 chance of a birthday match is 23. 

 

c. There are 1000 possible 3-digit sequences to end a SS number (000 through 999). Using the idea from 

a, P(at least two have the same SS ending) = 1 – 
10,1000

101000

P
= 1 – .956 = .044. 

Assuming birthdays and SS endings are independent, P(at least one “coincidence”) = P(birthday 

coincidence  SS coincidence) = .117 + .044 – (.117)(.044) = .156.  
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106. See the accompanying tree diagram. 

 

a. P(G | R1 < R2 < R3) = 
.15

.67
.15 .075




while P(B | R1 < R2 < R3) = .33, so classify the specimen as 

granite. Equivalently, P(G | R1 < R2 < R3) = .67 > ½ so granite is more likely.  

 

b. P(G | R1 < R3 < R2) = 
.0625

.2941
.2125

  < ½, so classify the specimen as basalt. 

P(G | R3 < R1 < R2) = 
.0375

.0667
.5625

 < ½, so classify the specimen as basalt. 

 

c. P(erroneous classification) = P(B classified as G) + P(G classified as B) = 

P(B)P(classified as G | B) + P(G)P(classified as B | G) = 

(.75)P(R1 < R2 < R3 | B) + (.25)P(R1 < R3 < R2 or R3 < R1 < R2 | G) = 

 (.75)(.10) + (.25)(.25 + .15) = .175. 

 

d. For what values of p will P(G | R1 < R2 < R3), P(G | R1 < R3 < R2), and P(G | R3 < R1 < R2) all exceed 

½? Replacing .25 and .75 with p and 1 – p in the tree diagram, 

P(G | R1 < R2 < R3) = 
.6 .6

.5
.6 .1(1 ) .1 .5

p p

p p p
 

  
 iff 

1

7
p  ; 

P(G | R1 < R3 < R2) = 
.25

.5
.25 .2(1 )

p

p p


 
 iff 

4

9
p  ; 

P(G | R3 < R1 < R2) = 
.15

.5
.15 .7(1 )

p

p p


 
 iff 

14

17
p   (most restrictive). Therefore, one would always 

classify a rock as granite iff 
14

17
p  . 
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107. P(detection by the end of the nth glimpse) = 1 – P(not detected in first n glimpses) = 

1 –
1 2 )( nG GP G     = 1 – 

1 2) ( )( ( ) nP GP G P G   = 1 – (1 – p1)(1 – p2) … (1 – pn) = 1 – )1(
1

i

n

i
p


. 

 

108.  

a. P(walks on 4th pitch) = P(first 4 pitches are balls) = (.5)4 = .0625. 

 

b. P(walks on 6th pitch) = P(2 of the first 5 are strikes  #6 is a ball) =  

P(2 of the first 5 are strikes)P(#6 is a ball) = 
5

2

 
 
 

(.5)2(.5)3 (.5) = .15625. 

c. Following the pattern from b, P(walks on 5th pitch) = 
4

1

 
 
 

(.5)1(.5)3(.5) = .125. Therefore,  P(batter 

walks) = P(walks on 4th) + P(walks on 5th) + P(walks on 6th) =    

.0625 + .125 + .15625 = .34375. 

d. P(first batter scores while no one is out) = P(first four batters all walk) = (.34375)4 = .014. 

 

109.  

a. P(all in correct room) = 
1 1

4! 24
 = .0417. 

 

b. The 9 outcomes which yield completely incorrect assignments are: 2143, 2341, 2413, 3142, 3412, 

3421, 4123, 4321, and 4312, so P(all incorrect) = 
9

24
= .375. 

 

110.  

a. P(all full) = P(A  B  C) = (.9)(.7)(.8) = .504. 

P(at least one isn’t full) = 1 –  P(all full) = 1 – .504 = .496. 

 

b. P(only NY is full) = P(A  B  C) = P(A)P(B)P(C) = (.9)(1–.7)(1–.8) = .054. 

Similarly, P(only Atlanta is full) = .014 and P(only LA is full) = .024. 

So, P(exactly one full) = .054 + .014 + .024 = .092. 
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111. Note: s = 0 means that the very first candidate interviewed is hired.  Each entry below is the candidate hired 

for the given policy and outcome. 

 

Outcome s = 0 s = 1 s = 2 s = 3 Outcome s = 0 s = 1 s = 2 s = 3 

1234 1 4 4 4 3124 3 1 4 4 

1243 1 3 3 3 3142 3 1 4 2 

1324 1 4 4 4 3214 3 2 1 4 

1342 1 2 2 2 3241 3 2 1 1 

1423 1 3 3 3 3412 3 1 1 2 

1432 1 2 2 2 3421 3 2 2 1 

2134 2 1 4 4 4123 4 1 3 3 

2143 2 1 3 3 4132 4 1 2 2 

2314 2 1 1 4 4213 4 2 1 3 

2341 2 1 1 1 4231 4 2 1 1 

2413 2 1 1 3 4312 4 3 1 2 

2431 2 1 1 1 4321 4 3 2 1 

 

From the table, we derive the following probability distribution based on s: 

s 0 1 2 3 

P(hire #1) 
24

6  
24

11  
24

10  
24

6  

Therefore s = 1 is the best policy. 

 

 

112. P(at least one occurs) = 1 – P(none occur) = 1 – (1 – p1)(1 – p2)(1 – p3)(1 – p4). 

P(at least two occur) = 1 – P(none or exactly one occur) =  

1 – [(1 – p1)(1 – p2)(1 – p3)(1 – p4) + p1(1 – p2)(1 – p3)(1 – p4) + (1 – p1) p2(1 – p3)(1 – p4) +    

(1 – p1)(1 – p2)p3(1 – p4) + (1 – p1)(1 – p2)(1 – p3)p4]. 

 

113. P(A1) = P(draw slip 1 or 4) = ½; P(A2) = P(draw slip 2 or 4) = ½; 

P(A3) = P(draw slip 3 or 4) = ½; P(A1  A2) = P(draw slip 4) = ¼; 

P(A2  A3) = P(draw slip 4) = ¼;  P(A1  A3) = P(draw slip 4) = ¼. 

Hence P(A1  A2) = P(A1)P(A2) = ¼; P(A2  A3) = P(A2)P(A3) = ¼; and 

P(A1  A3) = P(A1)P(A3) = ¼. Thus, there exists pairwise independence. However, 

P(A1  A2  A3) = P(draw slip 4) = ¼  ⅛ = P(A1)P(A2)P(A3), so the events are not mutually independent. 

 

114. P(A1| A2  A3) = 1 2 3 1 2 3

2 3 2 3

( ) ( ) ( ) ( )

( ) ( ) ( )

P A A A P A P A P A

P A A P A P A

 



= P(A1). 

 




