
 
 
 
 
 

SECTION II  
(Modeling for Control) 



 
 
 
II.1 Consider a continuous blending process where the water is mixed with slurry to give 
slurry the desired consistency (Figure II.1). The streams are mixed in a constant volume 
(V) blending tank, and the mass fraction of the solids in the inlet slurry stream is given as 
xs, with a volumetric flow rate of qs. Since xs and qs vary, the water make-up mass flow 
rate w is adjusted to compensate for these variations. Develop a model for this blender 
that can be used to predict the dynamic behavior of the mass fraction of solids in the exit 
stream xe for changes in xs, qs, or w. What is the number of degrees of freedom for this 
process? 

 
 

Figure II.1: Schematic of the blending process 
 
Solution: 
 
Let us assume that we have perfect mixing and no volume changes due to mixing. Water 
stream is considered to be pure water and ρt is the density of solid. The mass flow rates of 
each stream are designated by w and the volumetric rates are by q. Then, by definition, 
we have the following, 
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The total mass balance yields the following equation, 
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And since the volume is constant, we have, 
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A component balance on the solids will give, 
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This equation along with the definitions of the densities, forms the model of this process 
to help predict the variations in the mass fraction of solids in the exit slurry as a function 
of other process variables. 
 
For a degree of freedom analysis, we have, 
 

• Constants:  V, ρ, ρt   
• Number of Equations: 4 (one mass balance + one component balance + two 

algebraic relations) 
• Number of variables: ρs, ρe, w, we, ws, xe, xs    

 
The number of degrees of freedom is 3.  Note that one usually needs to specify the 
upstream solids content (density or solids fraction) and the flow rate as well as the water 
flow rate to fully define the system. 
 
II.2. A binary mixture at its saturation point is fed to a single-stage flash unit (Figure 
II.2), where the mixture is heated at an unknown rate (Q). The feed flow rate and feed 
mole fractions are known and may vary with time. Assume that x represents the mole 
fraction of the more volatile component (e.g., xf is the mole fraction of the more volatile 
component in the feed stream) and the molar heat of vaporization is the same for both 
components. Flow rate is given in moles per unit time. H represents the molar liquid 
holdup. 

 
 



 
 

Figure II.2: Schematic of a flash unit. 
 

 1. Derive the modeling equations for this system. State your assumptions clearly 
and explicitly. 

 2. Derive the transfer function between the overhead mole fraction of the more 
volatile component and its feed mole fraction. (Hint: Assume constant molar 
holdup.) 

 
Solution: 
 
The control volume is the flash tank. We make the following assumptions: 
 

• Negligible vapor holdup in the unit 
• Constant stage temperature and pressure 
• No heat loss to surroundings 
• Negligible heat transfer resistance for transfer of Q. 

 
The equilibrium relationship is given by: 
 

BD xPTKx ),(=  
 
where is K the equilibrium constant 
 
For the energy balance, the quantity of interest is: 
 

PKU ++=Energy Total  
 



Here, U, K, P represent the internal, kinetic and potential energies of the system, 
respectively. Assuming thermal equilibrium between the vapor and the liquid streams, we 
can also neglect the energy balance on the vapor phase.   
 
Since the liquid in the tank can be considered stationary 
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For liquid systems, one can assume that 
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H denotes the total enthalpy of the liquid in the tank (vapor holdup neglected).  
Furthermore, 
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Where: 

cp,B,av : average molar heat capacity of the liquid in the tank  
Tref : reference temperature where the specific enthalpy of the liquid is assumed to 

be zero. 
The average molar heat capacities of the liquid streams can be expressed as: 
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Total energy balance can be formulated as: 
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where λ is the molar heat of vaporization, and TTin = . At steady-state, this reduces to, 
 

λDQ =  
 
Overall material balance yields, 
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where HM is the mass holdup of the unit and Mi are the mass flow rates. We can express 
the mass flow rate as, for example: 
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This results in the following material balance (molar balance) expression: 
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The component balance for component A yields, 
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II.3. An oil stream is heated as it passes through two well-mixed tanks in series (Exercise 
I.11). Assuming constant physical properties, develop the nonlinear state-space model for 
this process to predict the time evolution of the temperatures in both tanks. State your 
assumptions clearly and explicitly. 
 
Solution: 
 
In this problem the state variables are 21,TT .  Possible time-varying inputs are the heat 
input and the oil flow rate.   
 
Since the volumes are assumed constant we only need to perform an energy balance 
around each tank 
 
Total energy balance can be formulated as: 
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PEKEUE ++= , 

 
where U is the internal energy, KE is the kinetic energy and PE is the potential energy. 
Since the tank is not moving,  
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 and for liquid systems, 

dt
dH

dt
dU T=  

 
where, HT is the total enthalpy of material in the tank. H may be written as,  
 

( )refp TTAhC −ρ  
 
where Tref : is the reference temperature. The energy balance for Tank 1 may be written 
as: 
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Assuming Tref = 0, we will have: 
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Similarly for Tank 2 we have 
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Thus the set of Equation representing the dynamic of the temperatures in the tanks is 
given by 
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The equations are ‘slightly’ nonlinear due to the multiplication between the flow rate and 
the temperatures. Rearranging and taking the Taylor series expansion, 
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We can see that the constant coefficients are given as: 
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By subtracting the steady-state equation and defining deviation variables (like 

sFFF −= ), we obtain the following equations: 
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II.4. Consider the stirred-tank heater shown in Figure II.3. The steam is injected directly 
in the liquid. 1A  is the cross sectional area of the tank. Assume that the effluent flow rate 
is proportional to the liquid static pressure that causes its flow.  
 

1. Identify the state variables of the system. 
2. Determine what balances you should perform. 
3. Develop the state model that describes the dynamic behavior of the system. 
 
 
 
 
 
 
 



 
 

 
 

Figure II.3: Stirred tank heater 
 
 
Solution: 
 
a) State Variables: h , T2 
b) Total mass and energy balance. 

 
Total mass balance 
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At constant density: 
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Total energy balance 
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where U is the internal energy, KE is the kinetic energy and PE is the potential energy. 
Since the tank is not moving,  
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dt
dH

dt
dU T=  

 
where, HT is the total enthalpy of material in the tank. Total mass in the tank is  
 

AhV ρρ = . 
 
H may be written as,  
 

( )refp TTAhC −ρ  
 
where Tref : is the reference temperature. The input of total energy into the tank is:  
 

HHF ∆+11ρ  
 
where, H∆ is the heat supplied by 40 psi steam per unit volume. The output of total 
energy from the tank is: 22 HFρ . The energy balance may be written as: 
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Substituting for AhV ρρ = , we get 
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Assuming Tref = 0, we will have: 
 

( )
pC

HTFTF
dt
hTdA

ρ
∆

+−= 2211
2  

Using the product rule:  
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Substituting this into the above equation, we get: 
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From Equation 1, we have the term 
dt
dhA  in the above equation. Therefore, the energy 

balance results in the following equation: 
 









+−−

∆
+−=

ρρ
QFFT

C
HTFTF

dt
dTAh

p
2122211

2  

 
Simplifying results in the following equation: 
 
 

ρρ
QT

C
HTFTF

dt
dTAh

p
22111

2 −
∆

+−=   Equation 2 

 
II.5. Most separation processes in the chemical industry consist of a sequence of stages. 
For example, sulfur dioxide present in combustion gas may be removed by the use of a 
liquid absorbent (such as dimethylalanine) in a multistage absorber. Consider the three-
stage absorber displayed in Figure II.4. 
 



 
 

Figure II.4: Schematic of a three-stage absorber. 
 
This process is modeled through the following equations2
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H is the liquid holdup in each stage and assumed to be constant, and x and y represent 
liquid and vapor compositions, respectively.  Also, LH /=τ  is the liquid residence time, 

LaGS /=  is the stripping factor and LGK /=  is the gas-to-liquid ratio.  A and b are 
constants. 

a.  How many variables are there?  How many equations (relationships)?  What is 
the degree of freedom? 

b.  Is this system underdetermined or overdetermined?  Why? 

                                                           
2 Seborg, D.E, T.F. Edgar. D.A. Mellichamp, Process Dynamics and Control, Wiley 



c.  What additional relationships, if necessary, can you suggest to reduce the 
degrees of freedom to zero? 

 
Solution: 
 
All relevant symbols are given below: 
 

Hba ,,  (Constants) 
τ,,,,,,,,,,,, 321321 LGKSyyyyxxxx ff  (13 variables) 

 
Here we also included the gas phase compositions (of SO2) although they do not appear 
explicitly in the modeling equations.  We have three equations that result from the 
application of the component balances in each stage and three defining equations for 
three variables (given in the problem statement).  One can also write the following 
equilibrium relationships that must be satisfied at each stage: 
 

3,2,1     )( == iyfx iii  
 
With these, we have a total of nine equations.  The degree of freedom analysis yields: 
 

4913 =−=F  
 
This is an underdetermined system.  To fully define the system and have a feasible 
control problem, we need to remove four degrees of freedom.  We can do that by the 
following specifications: 
 
1. The SO2 content of the liquid feed should be zero (there is no reason why 

dimethylalanine should contain any SO2).  0=fx  
2. The feed gas composition fy  can be considered as a disturbance as it would be 

defined by the operation of upstream units. 
3. Similarly, the flow rate of the gas stream may be a considered as a disturbance 

because the operation of upstream units (furnaces) may vary. 
4. A control problem can be defined.  One can suggest a feedback control mechanism 

that would measure the SO2 composition in the gas phase, 3y , and according to the 
specified target, etty arg,3 , manipulate the flow rate of the liquid, L.  That establishes a 
relationship through the feedback mechanism as follows: 

)( 3yfL =  
 
Hence, we now have one specification, two disturbances, and a feedback mechanism, 
resulting in four new relationships, thereby reducing the degrees of freedom to zero. 
 
 
II.6. Consider a liquid chromatography for the separation of a mixture containing N 
components. Assuming that the process is isothermal, and there are no radial 



concentration gradients, the following governing equations for solute j in the mobile 
phase and on the adsorbent can be obtained: 
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In this model, c is the concentration of solute in the mobile phase, and q is the adsorbate 
concentration.  Also, 0u  is the superficial velocity, ε  and tε  are column void fraction and 
total void fraction respectively, LD  is the axial dispersion coefficient, mq  is the maximum 
adsorbate concentration, and jak ,  and jdk ,  are the adsorption and desorption rate 
constants for solute j respectively. 

 1. How would you classify this system of equations? Why? 
 2. How many variables are there? How many equations (relationships)? What is the 

number of degrees of freedom? 
 3. Is this system underdetermined or overdetermined? Why? 
 4. What additional relationships, if necessary, can you suggest to reduce the degrees 

of freedom to zero? 
 
Solution: 
 
a. This model should be classified as a nonlinear, distributed model.  Distributed 

models provide relationships for state variables as functions of both space and time, 
whereas a non-distributed (lumped) model will only depend on time.  It is also 
nonlinear as one can see the terms involving multiplication of state variables. 

 
a. For N components, we have jc and jq  as the state variables.  One can also consider 

the velocity 0u  to be a variable as the throughput for the chromatography column 
may change. Then, we have the following parameters: 

Ltjmjdja Dqkk ,,,,, ,,, εε  
 
This yields 5N+4 variables.   We have 2N equations.  The degrees of freedom at this 
point are: 

432)45( +=−+= NNNF  
Can we come up with more relationships?  Following assumptions are appropriate: 

• Void fractions ( tεε , ) are constant. 
• Maximum adsorbate concentration jmq ,  is a constant. 

This yields 2+N  additional relationships.  The adsorption and desorption rate constants 
can vary with time during the chromatographic process.  They can also be related to the 



intrinsic adsorption/desorption rate constants (Lin et al., Ind. & Eng. Chem. Research, 
1998).  We will assume that they can be expressed as: 
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This yields 2N more relationships.  Finally, the dispersion coefficient can be expressed 
as: 
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In summary, we have 
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Thus, the degree of freedom is one. 
 
b. The system is underdetermined because 01 >=F . 
 
c. What we, as process control engineers, would do is to use a controller to affect one 

variable by manipulating another variable, thus providing one additional relationship 
and reducing F to 0. For example, it might be advantageous to control the exit 
concentration of one of the species by manipulating the velocity (or the flow through) 

0u .  The feedback yields one additional relationship between two variables, thus 
reducing the degrees of freedom to zero. 

 
II.7. Consider a distillation process (Figure II.5) with the following assumptions: binary 
mixture, constant pressure, constant relative volatility, constant molar flows, no vapor 
holdup, equilibrium on all stages, and a total condenser. The modeling equations are 
given as follows: 
 

 
 

Figure II.5: Schematic of the distillation column 
 



Total material balance on stage i: 
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Material balance for light component on stage i: 
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The above equations apply to all stages except the top (condenser), the feed and the 
bottom (reboiler) stages.  

From the assumption of constant molar flows and no vapor dynamics, we arrive at the 
following expression for the vapor flows: 

V 1 ==− ii VV  

The liquid flows depend on the liquid holdup on the stage above. We may use Francis' 
Weir formula: 

)( ii mfL =  

The vapor composition yi is related to the liquid composition xi on the same stage 
through the vapor-liquid equilibrium relationship: 
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Total Condenser: i=nT 
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Reboiler: i=1 
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1. How many variables are there in this model?  How many equations 
(relationships)?  What is the degree of freedom? 

2. Is this system underdetermined or overdetermined?  Why? 
3. What additional relationships, if necessary, can one suggest to reduce the degrees 

of freedom to zero? 
 
Solution: 
 
Variables: 

RzFDBVyxLm Fiiii ;;;,;;;;;  
Thus, we have 4N+6 variables and α is a parameter to be specified. 
 
Equations:  
 
2N differential equations and 2N algebraic equations →4N Equations 
 
Degrees of freedom DOF=6 
 
System is underdetermined since DOF>0 
 
We need to specify some variables and/or define possible control loops to reduce the 
DOF to zero. 
 
Feed conditions F and zF are specified from conditions elsewhere in the plant 
(disturbances) this reduces the degrees of freedom to 4. 
 
We can define the following control loops which will add additional relationships among 
the variables: 
 

• Distillate flow rate (D) can be adjusted to control the level of the condenser drum 
• Bottom flow rate (B) can be adjusted to control the level of the reboiler  
• Reboiler heat duty can be adjusted to control the amount of vapor in the system 
• Reflux flow rate can be adjusted to control the composition on the top of the 

column  
 
This will reduce the degrees of freedom (DOF) to zero 
 



II.8. For the single-stage flash unit introduced earlier in Exercise II.2, derive the transfer 
function between the overhead mole fraction of the more volatile component and its feed 
mole fraction. 
 
Solution: 
 
We assumed constant molar holdup, hence, we have the following component balance: 
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Using the equilibrium relationship (and also the fact that T and P are constant), we have: 
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In standard form 
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This is a linear equation (as all flows are constant now).  Defining deviation variables, 
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And taking Laplace transform and rearranging, we have the following transfer function: 
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II.9. A liquid-phase isothermal reaction takes place in a continuous stirred-tank reactor. 
The reaction is first-order, 

BA →       AkCr =  
We assume that the vessel has a constant volume, operates isothermally (constant 

temperature) and is well mixed. 
For this system: 
1. Derive the process transfer function between the outlet (tank) concentration and 

the feed concentration of component A. 
2. Obtain the time evolution of the concentration as function of the feed 

concentration and the process parameters. Hint: use partial fraction expansion. 
3. For the design and operating parameters,  .F 3

0 mol/m 10= , 3m 2=V , 
3

0 mol/m 10.C A = , 1/min0500  .k =  and 3
0 mol/m1 C A =∆ , calculate the  outlet 

concentration when ( )VkFVt += /  and when min 40=t . 
 
Solution: 
 
From Example 4.5 in the book, the state equation for our reactor that provides the time 
evolution of the reactant composition is given as 
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Rewriting 
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Note that k in the last equation is the steady-state gain. Defining deviation variables and 
taking Laplace transform to both sides of the equation 
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To obtain the time domain solution, we use partial fraction technique 
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Inverting (using Table of Laplace functions) 
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First we need to find the steady-state value for the concentration CAs. 
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Figure II.S1 illustrates a plot of the concentration as function of time. 
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Figure II.S1: Concentration response as function of time. 

 
II.10. Consider the same liquid-phase, isothermal, continuous stirred-tank reactor as in 
Exercise II.9 where the component balance can also be expressed in terms of the product 
concentration. 
 

1. Derive the process transfer function between the outlet (tank) concentration 
for component B (product) and the feed concentration of component A. 

2. Obtain the time evolution of the concentration as a function of the feed 
concentration and the process parameters and compare your results with those 
of Exercise II.9. 

3. Assuming the same design and operating conditions as before what is the 
value of the concentration when ( )VkFVt += /  and min 40=t ? 

 
 
Solution: 
 
Balance on CB 
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where k1 is the new steady-state gain.  
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Inverting using the Laplace Table, 
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Figure II.S2:  Plot of the concentrations as function of time. 

 

II.11. Consider the same liquid-phase isothermal continuous stirred-tank reactor as in 
Exercise II.9 but now the reaction is second-order,  

BA →       2
AkCr =  

 
1. Obtain a linear state-space model for this system.  
2. Derive the process transfer function between the outlet (tank) concentration and 

the feed concentration of component A. 
3. Compare the characteristic parameters with those of Exercise II.9 and discuss. 



 
Solution: 
 
From Example 4.5 in the book, the state equation for our reactor that provides the time 
evolution of the reactant composition is given as 
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We have to linearize, 
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and the definition of the steady-state gain should be clear. Taking Laplace transform of 
both sides of the equation 
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To obtain the time domain solution, we use partial fraction technique 
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Inverting (using Table of Laplace functions), 
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First we need to find the steady-state value for the concentration CAs. At steady-state, 
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Roots are -1.5247 and 0.5247, Thus CAs=0.5247 since the other root is negative. 
Substituting this value 
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II.12. Consider the same liquid-phase isothermal, continuous, stirred-tank reactor as in 
Exercise II.11 and now allow for the possibility that the vessel volume may also change. 
The reaction is still second-order and the outlet flow rate depends linearly on the liquid 
volume in the tank. 

1. What are the state variable(s), input variable(s) and output variable(s)?  Obtain a 
linear state-space model for this system.  

2. Derive the process transfer function between the outlet (tank) concentration of 
component A and the feed flow rate. 

3. What are the poles and zeros of this transfer function? 
 
 
Solution: 
 
The model equations are given as: 
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Here C  is the tank concentration, V  is the tank volume, F is the flow rate, and the 
subscript 0 refers to inlet conditions.  k and β are constants.   
 
The state variables are composition C and volume V.  Input variables would be inlet 
concentration and inlet flow rate.  The output variables would depend on control 
objectives.  We would typically be interested in maintaining a constant yield in the 
reactor (hence constant outlet composition) and constant level (or volume) to ensure 
constant residence time.  Outputs can be the outlet composition and the volume (the state 
variables). 
 
The first equation (component balance) can be classified as nonlinear, hence requiring the 
application of Taylor expansion.  The second equation (total mass balance) is already in 
linear form. 

),,,(

),,,()(

00200

001
2

0
0

CVCFfVFFF
dt
dV

CVCFfkCCC
V
F

dt
dC

=−=−=

=−−=

β
 



 
The Taylor expansion of the first equation yields: 
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The derivatives can be calculated as follows: 
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The first equation becomes 
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By defining deviation variables like sCCC −= , and recognizing that 
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To define the state-space model, define 2211020121 ,,,,, xyxyFuCuVxCx ====== .  
This leads to 
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Taking the Laplace transform of both linear equations, we get, 
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We need to find the transfer function, 
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The poles and zeros come from the roots of the following polynomials: 
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II.13. A bioreactor is represented by the following model that uses the Monod kinetics: 
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Here 1x  is the biomass concentration, 2x  is the substrate concentration, and D  is the 
dilution rate. The specific growth rate µ  depends on the substrate concentration as 
follows: 
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In this system, we are interested in controlling the biomass concentration using the 
dilution rate, at the steady-state defined by, 4.0,3692.0,4523.1 21 === sss Dxx . 

 1. Obtain a linear state-space model for this system. 
 2. Derive the process transfer function for this system. 
 3. What is the order of this process? 
 
Solution: 
 
We start with the following expansion, 
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The derivative terms can be calculated as follows, 
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This yields the following state space form of the model, after defining the deviation 
variables: 
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To obtain the transfer function model, we need to take Laplace transform of the linear 
model, 
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Solve the second equation for )(2 sx and replace in the second, 
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Now, we have to collect the terms for the transfer function, and recognize that 
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This is a second-order system. 
 

II.14. A process model is given: 
 



12

2
=++ x

dt
dxa

dt
xd  

 
with the initial conditions, 0)0(')0( == xx . 

1. Using Laplace transformation, find the solutions of this model when a = 1 and a 
= 3. 

2.  Plot the solution )(tx  on one graph and discuss the effect of the parameter a on 
the solution. 
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Taking the Laplace transform of this expression yields 
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Multiplying both sides by s and evaluating the expression at 0=s , 
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From the Laplace Transform tables, we observe that, 
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We also note the identity, 
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By completing the inverse transform, this results in, 
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The case with 3=a  can be done in a similar manner.  The result will be: 
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Figure II.S3 shows the behavior of x(t) as a function of time for both cases. Note the 
oscillatory response when 1=a  (blue line). 
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Figure II.S3: Plot of x(t) for the cases in Exercise II.14. 
 
 
II.15. For the process discussed earlier in Exercises I.11 and II.3, where an oil stream is 
heated as it passes through two well-mixed tanks in series and assuming constant 
physical properties, develop the transfer functions between the second tank temperature 
(output), 2T , and the heat input (manipulated variable), Q  and the flow rate (disturbance), 
F . 0T  can be assumed as constant (what if it is not?). 
 
Solution: 
 
The equations are ‘slightly’ nonlinear due to the multiplication between the flow rate and 
the temperatures.  Rearranging and taking the Taylor series expansion, 
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We can see that the constant coefficients are given as: 
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By subtracting the steady-state equation and defining deviation variables (like 

sFFF −= ), we obtain the following equations: 
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Taking the Laplace transformation, 
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and rearranging, 
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Replacing the first equation into the second equation and rearranging again, 
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The transfer functions can now be identified, 
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II.16. A continuous pre-fermenter shown in Figure II.6 is used as the first stage of cheese 
manufacture2.  

 

Figure II.6: Continuous pre-fermenter. 

 

The pre-fermenter is supplied by skim milk (substrate) and the cheese starter (cells) and 
operated at 300

fX
C. The pH of the acidified skim milk is measured using a pH sensor. In 

Figure II.6, , fS  and fP  denote the cell concentration, the lactose concentration and 
the lactic acid concentration in the feed stream, respectively. Since the flow rate of the 
cheese starter is very small compared to the skim milk flow rate, the lactose 
concentration in the feed is neglected. This process is modeled using the following mass 
balance equations: 
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The following definitions are also given: 
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Here, maxµ , maxσ , maxπ  are the maximum specific growth rate, the maximum specific 
lactose consumption rate and the maximum specific production rate, respectively. The 
dependency between the pH and the lactic acid concentration is expressed through the 
following correlation: 

[ ] 32
10 02134.02050.09564.0701.6pHlog PPPH −+−==− +  

The dilution rate is defined as VF /3 , and 32 / FF  is the seed feed rate. Operating and 
design parameters are given in Table II.2. 
 

1. What are the steady-state operating conditions for this process? How many of 
them correspond to non-trivial operation? (Hint: The steady-state can be 
considered as dependent on pH) 

2. Linearize the model equations around a steady-state point determined above. 
3. Comment on the stability of the system around this steady-state. 

 
Solution: 
 
Recognizing that the inlet flow rate needs to equal the outlet flow rate to maintain 
constant volume, we have, 
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The dilution rate is defined as: 
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This yields the following rephrased model equations: 
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The steady condition can be obtained from this equation by setting the differential terms 
to zero. In this case, the steady-state conditions can be gleaned from a visual inspection 
of these equations. The first steady-state would be the trivial (wash-out) solution with: 
 

0;;0 === sfss PSSX  
 
The second steady-state condition can be obtained by observing that the first equation 
would vanish when D=maxµ .  
 
The steady-state condition then is dependent on the value of D and what the fermenter pH 
is. We can set up a MATLAB program that would calculate the steady-state conditions as 
a function of pH. In fact, we can develop a plot of D vs pH. For a given value of pH, we 
can obtain the steady-state values of the variables X, S and P along with D. Here is the 
program that calculates the steady-state at a pH of 6. 
 
%Steady-states for the prefermentor - Exercise II.16 
%initial guesses 
x0(1)=0.3; %this is X 
x0(2)=45; %this is S 
x0(3)=1.5; %this is P 
x0(4)=0.36; %this is D 
%Calculation of steady-state 
x = fsolve(@prefermenterfun,x0,optimset('Display','iter')); 
 
function F = prefermenterfun(x) 
H=1e-6; 
Sf=50.3; 
Xf=5.4; 
Pf=5.9; 
mu0=0.51; 
pi0=3.35; 
sigma0=6.02; 
kh1=9.0e-08; 
kh2=6.85e-06; 
kh3=1.5e-07; 
kh4=3.91e-06; 



kh5=4.88e-08; 
kh6=4.2e-06; 
mu=mu0*H/(kh1+H+H^2/kh2); 
sigma=sigma0*H/(kh3+H+H^2/kh4); 
pi=pi0*H/(kh5+H+H^2/kh6); 
F1=(mu-x(4))*x(1); 
F2=x(4)*(Sf-x(2))-sigma*x(1); 
F3=-x(4)*x(3)+pi*x(1); 
F4=6.701-0.9564*x(3)+0.2050*x(3)^2-0.02134*x(3)^3+log10(H); 
F=[F1 F2 F3 F4]; 
return 
 
 
This generates 
 
  Xs=0.1404;   Ss=48.8432;   Ps=0.8856    and Ds=0.4126 
 
One can do this calculation for a range of pH values from 5.5 to 6.7. This yields the plot 
in Figure II.S4. It shows that for a large range of pH values there are two values of the 
dilution rate thus creating multiple steady-states. Thus, the conclusion would be that there 
are a maximum of three steady-states (including the wash-out).  
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Figure II.S4: Plot of D vs pH. 

 
The linearization can be performed around one of these states (select a pH value) and 
would result in the following equation: 
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Here the state matrix is evaluated at the steady-state values and the bar notation indicates 
differentials with respect to P (through H+). Of course, since we can ignore the wash-out, 
and recognizing maxµ=D , the equation can be rephrased as: 
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The stability can be inferred from the eigenvalues of the state matrix. We can write the 
characteristic equation as, 
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See the paper by Funahashi and Nakamura (2007) for further discussion. 
 
II.17. A process is modeled by the following equations: 
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The control objectives dictate the following output equations: 
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1. Find the four transfer functions relating the outputs (y1,  y2) to the inputs 

(u1,  u2

2.  Solve the equations with the conditions, u

). 

1(t) = 1,  u2(t) = 1, y1(0) = 0,  and 
y2

3.  Plot the output responses. What is the steady-state reached by the outputs? 
(0) = 0. 

 
Solution: 
 
We start by linearizing the nonlinear equations, recognizing that we have two state 
variables and two inputs in the state equations. The first equation yields: 
 



( )

)()(

)()(,,,

),,,(

22
,,,2

1
11

,,,1

1

22
,,,2

1
11

,,,1

1
21211

21211
1

21212121

21212121

s
uuxx

s
uuxx

s
uuxx

s
uuxx

ssss

uu
u
fuu

u
f

xx
x
fxx

x
fuuxxf

uuxxf
dt
dx

ssssssss

ssssssss

−
∂
∂

+−
∂
∂

+

+−
∂
∂

+−
∂
∂

+≅

=

 

 
It can be put into the form, 
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Also recognizing the fact that 0),,,( 21211 =ssss uuxxf  from the steady-state condition.  

Note that the coefficients are given as follows: 
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One can derive the coefficients of the second equation ),,,( 21212
2 uuxxf
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=  also as 

follows: 
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We define the deviation variables: 
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This results in the following linear equations: 
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If we take the Laplace transform of both equations, we have: 
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Note that )()();()( 2211 sxsysxsy == .  Rearranging, and making the substitutions, 
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and making the substitutions, 
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Collecting the terms, we end up with the following transfer functions, 
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Here are the two files needed to solve the problem in MATLAB. 
_______________ 
 
%File odehmwk.m 
%solution of a set of ODEs 
clear all 
dt=0.1;         
t=[0:dt:10]; 
x0=[0;0]; 
[T Y] = ode45('odeeq',[0 10], x0); 

plot (T,Y); 
________________ 
 
%File odeeq.m 
%ODEs 
function  dy=odeeq(t,y) 
u1=1; 
u2=1; 
dy=[0.5*(-2*y(1)-3*u1*y(2)+exp(-y(1))) 
    -y(2)+2*y(1)/(1+y(2))+4*u2]; 

return 
____________ 
 
The plot obtained is given in Figure II.S5 (x1 is becoming negative and x2 is increasing): 
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Figure II.S5: Time response for x1 and x2. 

 
The steady state values can be obtained by simply typing the following on the command 
line (Last entries of the matrix Y): 
» whos 



  Name      Size         Bytes  Class 
  T        89x1            712  double array 
  Y        89x2           1424  double array 
  dt        1x1              8  double array 
  t         1x101          808  double array 
  x0        2x1             16  double array 
Grand total is 371 elements using 2968 bytes 
» Y(89,1) 
ans = 
   -1.7727 
» Y(89,2) 
ans = 
    3.1444 
 
The Simulink block diagram is shown in Figure II.S6. 
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Figure II.S6: Schematic of the model implemented in Simulink. 

 
II.18. Following state-space model is given, 
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Determine the eigenvalues of the state matrix. Also, find the transfer function model for 
this system. Report the poles and zeros of this transfer function. Obtain the response of 
this model to a step change in the input. 
 
Solution: 
 
We need to define the matrix A first and then issue the eig command in MATLAB: 
 
» A=[-2 1 0;-3 0 3;-1 0 -3] 
A = 
    -2     1     0 
    -3     0     3 
    -1     0    -3 
 
» eig(A) 
ans = 
  -0.8054 + 1.7006i 
  -0.8054 - 1.7006i 
  -3.3892 
 
To find the transfer function model we can use the following sequence (after defining B 
and C also): 
 
» [num,den]=ss2tf(A,B,C,0); 
» g=tf(num,den) 
  
Transfer function: 

            3 s + 12 
g(s) =      ---------------------- 

                  s^3 + 5 s^2 + 9 s + 12 
 

 
The poles and zeros can be obtained in various ways.  Here is one: 
 
 
» pole(g) 
ans = 
  -3.3892           
  -0.8054 + 1.7006i 
  -0.8054 - 1.7006i 



» zero(g) 
ans = 
   -4.0000 
 
Note that the eigenvalues and the poles are the same. Here is the command for obtaining 
the step response and the resulting output response plot in Figure II.S7: 
 
» step(g) 
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Figure II.S7: Step response of the output variable. 

 
 
II.19. A state-space model is given: 

 

[ ] 







=









−

+















−

−
=









2

1

2

1

2

1

10

117.1
7

238.2833.0
0405.2

x
x

y

u
x
x

x
x




 

 
Find the transfer function )(sg  where )()()( susgsy = . Determine the poles and zeros.   

 

Solution: 
 
There are various methods to obtain the transfer function for this system.  By taking 
Laplace transform of each equation, we obtain: 
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The output equation yields, 
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By rearranging the state equations and solving for )(2 sx , 
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We can also obtain the transfer function thorough the following expression (that can be 
easily derived using the Laplace transform rules): 
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where I is the identity matrix. 
 
Another way is to use MATLAB with the following commands: 
 
» A=[-2.405 0;0.833 -2.238]; 
» B=[7;-1.117]; 
» C=[0 1]; 
» D=0; 
» [num,den]=ss2tf(A,B,C,D); 
» g=tf(num,den) 
  
Transfer function: 

               -1.117 s + 3.145 
g(s) =   --------------------- 

                 s^2 + 4.643 s + 5.382 
 



 
II.20. A chemical reactor has been operating at steady-state for a long time with the feed 
flow rate kept constant at 3.5 m3/min. To handle a projected increase in upstream 
capacity, the operator decides to increase the feed flow rate suddenly by 10%, resulting in 
a change in the outlet stream composition recorded in Table II.2. Using the process 
reaction curve method, obtain an empirical transfer function model for this process. 
 

Table II.2: Composition data in response to a change in flow rate. 
 

Time (min) Change (gmol/m3) Time (min) Change (gmol/m3) 
0 0 1.6 0.35 
0.2 0 1.8 0.5 
0.4 0 2 0.55 
0.6 0.02 3 0.7 
0.8 0.1 4 0.9 
1 0.15 5 0.95 
1.2 0.2 6 1 
1.4 0.3 8 1 

 
 
Solution: 
 
The transfer function model that will be used in this method is given by: 
 

stDe
s
ksg −

+
=

1
)(

τ
 

The parameter K can be determined from the steady-state information: 
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One can use either the graphical method or the method that uses the output variable 
solution.  If you are using the equation-based method, you have to recognize the fact that 
the Example 6.1 is for a specific input (unit step change) only, and in this problem the 
change is 0.35 m3/min.  The latter gives: 
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Select two points on the graph: 
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We have the following equations: 
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They result in: 
min38.0min;9.1 == Dtτ  

 
So the transfer function is: 
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Graphically, one can show the result in Figure II.S8. 
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Figure II.S8: Plot of the composition data as in Table II.2. 

 
Note that this method yields, min7.25.02.3min;5.0 =−== τDt . The discrepancy 
results from the uncertainties built into each method. 
 
 
II.21. An experiment is performed on a shell-and-tube heat exchanger that heats a 
process stream with medium-pressure steam. In the experiment, the steam valve is 
opened an additional 5% in a stepwise manner. The resulting temperature response of the 
process outlet stream is given in Figure II.7. Determine the process model parameters 
using the reaction curve method, and estimate the inaccuracies due to the data and 
calculation methods as discussed in Chapter 6. 



 
Figure II.7: Temperature response of the outlet process stream. 

 
Solution: 
 
Using the Process Reaction Curve Method, we first identify the constant k by considering 
the ultimate value of the temperature and the magnitude of the input change, 
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Then, we draw an estimated tangent to the inflection point of the response and two points 
on the graph are noted as shown below (Figure II.S9). 
 
 
 
 
 
 
 
 
 
 
 



Figure II.S9: Illustration of the graphical approach. 
 
This yields the following estimates of the other parameters: 
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The transfer function representing the response of the process stream temperature with 
respect to the steam flow rate, then, looks like, 
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II.22. For the vertical tube double-pipe heat exchanger in Exercise I.12, a set of open-
loop experiments are carried out to study the system dynamics. The data can be 
downloaded from the authors’ web pages (see Preface) and consists of: 
 

• Outlet temperature of the vertical tube heat exchanger (stream 2) under variations 
of the flow rate of stream 1 (manipulated variable). 

• Outlet temperature of the vertical tube heat exchanger (stream 2) under variations 
of the flow rate of stream 2 (disturbance). 
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• Outlet temperature of the vertical tube heat exchanger (stream 2) under variations 
of the feed temperature (stream 2) (disturbance). 

 
The data are normalized as follows: 

• Flow rate % = (actual flow rate - 0)/7800*100  
(7800 is the span range on the DCS) 

• Temperature % = (actual temperature-32)/(212-32)*100 
 
For this system: 
 

1. Obtain the process transfer functions between the inputs (manipulated variable, 
disturbance) and the outlet temperature.  

2. Try alternative model structures and discuss the results. 
 
Solution: 
 
Changes in flow rate F602 
 
Using the complete data file for all changes in the input variable we obtain the following 
fit (Figure II.S10) 
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Figure II.S10: Fit of the model to the data. 
 
The corresponding transfer function is given by (using nonlinear regression) 
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However, if we use only the first portion of the data, corresponding to the first step test 
up to time 20 seconds), we obtain a fit as illustrated in Figure II.S11. 
 



 
Figure II.S11: Fit of the model to the data. 

 
The corresponding transfer function is given by 
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Using the middle portion of the data we have (Figure II.S12) 

 
 

Figure II.S12: Fit of the model to the data. 
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Similar studies can be performed using the other two portions of the data to analyze the 
variability of the process dynamic against positive and negative changes as well as the 
magnitude of the step.  
 



The differences are due to the nonlinear characteristics of the process. We can also 
appreciate that the transfer function obtained using the whole data set provides some kind 
of average for the systems dynamics when dealing with positive and negative changes 
and should be used for control design purposes. 
 
Using as a test a second order plus delay model (SOPTD) we obtain (Figure II.S13)  

 
Figure II.S13: Fit of the model to the data 
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However, the addition of complexity into the model does not add accuracy into the 
prediction thus a FOPTD model will be used for further processing. Also notice that tone 
of the time constants is very small compared to the other meaning that a first order plus 
delay model is a good choice for the process. 
 
Changes in flow rate F601 
 
Assuming a FOPTD model we obtain the fit as shown in Figure II.S14. 

 
Figure II.S14: Fit of the model to the data. 

 
 



This response clearly is not appropriate for the system’s dynamics. 
 
Selecting a second order model plus delay and lead element and after some manual 
adjustment of the model parameters, we have he fit shown in Figure II.S15. 
 

 
Figure II.S15: Fit of the model to the data. 
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which provides a more proper representation of the process dynamics and more 
importantly allows us to match the inverse response behavior of the process. 
 
Changes in the inlet process stream temperature (T601) 
 
We have for the overall fitting (using the whole data set), Figure II.S16. 

 
 

Figure II.S16: Fit of the model to the data. 
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Using the first portion of the data we obtain the fit as shown in Figure II.S17. 



 

 
Figure II.S17: Fit of the model to the data. 
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Using the middle portion of the data we have a fit a shown in Figure II.S18. 
 

 
Figure II.S18: Fit of the model to the data. 
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The best model in this case is an average between the last two cases, that is 
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Thus finally the model for the VTHX unit is given as follows 
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Final verdict on model selection: 

 
For the manipulated variable changes, a simple FOPDT model is enough. 

 
For the disturbances in inlet process stream flow rate, to be able to represent the more 
complex dynamics involved, a first-order model with a lead and a delay term is 
necessary. This is the only model to be able to represent the inverse response behavior. 

 
Why these types of response for a disturbance change? 

 
We have two effects acting together in opposite ways and at different time scales. One is 
a convective effect because the change of the amount of total flow coming into the heat 
exchanger and the other is a thermal effect since the temperature of the incoming feed has 
changed. The convective effect is immediate (incompressible fluid) and acts in the first 
instance, and the thermal effect takes some time to have an impact on the system (the 
time for the change to travel through the heat exchanger).  
 
II.23. Bioreactors are used to produce a variety of pharmaceuticals, and food products.  A 
simple bioreactor model involves biomass and substrate.  The biomass consists of cells 
that consume the substrate.  Following material balance equations are derived for a 
bioreactor3
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Here, D is the dilution rate, 1x  is the biomass concentration, 2x  is the substrate 
concentration, fx2  is the feed concentration of the substrate, and Y is the yield with 

4.0=Y .  The specific growth rate µ  for a system with substrate inhibition is given as, 
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3 Bequette, B.W., Process Dynamics: Modeling, Analysis and Simulation, Prentice Hall (1998). 



The constants are given as, 1
max1 53.0;/4545.0;/12.0 −=== hrgLkLgkm µ .  The 

steady-state values of the input and the state variables are, 
1745.0;5302.1;3.0 21

1 === −
sss xxhrD . 

 
Construct a simulation of this process in MATLAB/Simulink.  By introducing small step 
changes in the dilution rate, observe the biomass response.  Develop a discrete-time 
model (see Eq. 6.9) for this system using the step-response data.   
 
Solution: 
 
The Simulink block diagram for the bioreactor model is given in Figure II.S19. 
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Figure II.S19: Simulink diagram for bioreactor model. 



 
 
Staring from an initial condition of 0.12010 == xx , the biomass and substrate response 
for 3.0=D  is given in Figure II.S20. 
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Figure II.S20: The response of biomass (solid) and substrate (dashed) from an initial 

condition of 0.12010 == xx . 
 

 
Figure II.S21 shows the response of the biomass concentration for a series of step 
changes in the dilution rate.  We will use the first half of this response data for modeling 
and the second half for validation. 
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Figure II.S21: Set of step changes in dilution rate results in this biomass response. 

 
 
We will show the results for a first-order and a second-order model.  Following are the 
forms of the model: 
 
First-order: )( )()1( 11 iubiyaiy +−=+  
 
Second-order: )1()()1()()1( 2121 −++−−−=+ iubiubiyaiyaiy  
 
The parameter matrix is formed and calculated as follows for the second-order model, 
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The parameters obtained using the LS algorithm are: 
 
First-order:  1157.0;4443.0 11 −=−= ba  
Second-order: 1584.0;1673.0;1167.0;0817.1 2121 =−==−= bbaa  
 
The results of the validation and cross-validation simulations are shown in Figures II.S22 
and II.S23.  There is general agreement but the models perform poorly in predicting the 
steady-states.  This is most likely due to the nonlinear nature of the actual process. 
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(b) 

Figure II.S22. Validation of first-order model (a) and second-order model (b), actual 
data (line), model prediction (dashed). 
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(b) 

Figure II.S23. Cross-validation of first-order model (a) and second-order model (b), 
actual data (line), model prediction (dashed). 

 
 


