SECTION Il
(Modeling for Control)



11.1 Consider a continuous blending process where the water is mixed with slurry to give
slurry the desired consistency (Figure 11.1). The streams are mixed in a constant volume
(V) blending tank, and the mass fraction of the solids in the inlet slurry stream is given as
Xs, With a volumetric flow rate of gs. Since xs and s vary, the water make-up mass flow
rate w is adjusted to compensate for these variations. Develop a model for this blender
that can be used to predict the dynamic behavior of the mass fraction of solids in the exit
stream X, for changes in X, (s, or w. What is the number of degrees of freedom for this
process?
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Figure I11.1: Schematic of the blending process
Solution:

Let us assume that we have perfect mixing and no volume changes due to mixing. Water
stream is considered to be pure water and p; is the density of solid. The mass flow rates of
each stream are designated by w and the volumetric rates are by g. Then, by definition,
we have the following,
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The total mass balance yields the following equation,



d(peV)

it =W, +W-W,
And since the volume is constant, we have,
d
V% =W, +W-W,

A component balance on the solids will give,

d(X.p.V
( ;‘;e ):WSXS_WeXe
Or,
d(x d
\Y ( e) =—Vﬂ+wsxs_wexe :_Xe(Ws+W_We)+WsXs_WeXe

dt dt

This equation along with the definitions of the densities, forms the model of this process
to help predict the variations in the mass fraction of solids in the exit slurry as a function
of other process variables.

For a degree of freedom analysis, we have,

e Constants: V, p, pt

e Number of Equations: 4 (one mass balance + one component balance + two
algebraic relations)

e Number of variables: ps, pe, W, We, Ws, Xe, Xs

The number of degrees of freedom is 3. Note that one usually needs to specify the
upstream solids content (density or solids fraction) and the flow rate as well as the water
flow rate to fully define the system.

I11.2. A binary mixture at its saturation point is fed to a single-stage flash unit (Figure
11.2), where the mixture is heated at an unknown rate (Q). The feed flow rate and feed
mole fractions are known and may vary with time. Assume that x represents the mole
fraction of the more volatile component (e.g., X is the mole fraction of the more volatile
component in the feed stream) and the molar heat of vaporization is the same for both
components. Flow rate is given in moles per unit time. H represents the molar liquid
holdup.
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Figure 11.2: Schematic of a flash unit.

1. Derive the modeling equations for this system. State your assumptions clearly
and explicitly.

2. Derive the transfer function between the overhead mole fraction of the more
volatile component and its feed mole fraction. (Hint: Assume constant molar
holdup.)

Solution:

The control volume is the flash tank. We make the following assumptions:

Negligible vapor holdup in the unit

Constant stage temperature and pressure

No heat loss to surroundings

Negligible heat transfer resistance for transfer of Q.

The equilibrium relationship is given by:

Xp = K(T,P)Xxg
where is K the equilibrium constant
For the energy balance, the quantity of interest is:

Total Energy=U + K+ P



Here, U, K, P represent the internal, kinetic and potential energies of the system,
respectively. Assuming thermal equilibrium between the vapor and the liquid streams, we
can also neglect the energy balance on the vapor phase.

Since the liquid in the tank can be considered stationary
dKk dP dE duU
—=—=0 and —=—
dt  dt dt dt
For liquid systems, one can assume that

a _dH

dt — dt
H denotes the total enthalpy of the liquid in the tank (vapor holdup neglected).
Furthermore,

H= HCp,B,av (T _Tref)

Where:
CpBav . average molar heat capacity of the liquid in the tank
Tyt : reference temperature where the specific enthalpy of the liquid is assumed to
be zero.
The average molar heat capacities of the liquid streams can be expressed as:

Corav = Xp Cpa + (1_XF)Cp,C

Cpav = XgCpa * (1_XB)Cp,C
Total energy balance can be formulated as:

[Accumulation of total energy] [Input of total energy] [Output of total energy]

time time time
. [Energy supplied by steam]
time
Or
d |_HCp,B,av(T _Tref )J _

dt - I:Cp,F,av (Tin _Tref ) - BCp,B,av (T _Tref ) - D[Cp,D,av(T _Tref ) + /1] + Q

where A is the molar heat of vaporization, and T,, =T . At steady-state, this reduces to,
Q=D4
Overall material balance yields,

d(Hw)
dt




where Hy is the mass holdup of the unit and M; are the mass flow rates. We can express
the mass flow rate as, for example:

Mg = MW, FXe + MW F(1L- X ) = F[MW, + X (MW, — MW,)]

This results in the following material balance (molar balance) expression:

d(H[MW, + xg (MW, — MW,
(H[Mwe Bd(t A C)]):F[MWC+XF(MWA—MWC)]

— B[MW,, + x5 (MW, — MW,)]
— D[MW,, + xp (MW, — MW,.)]

The component balance for component A yields,

M) _ 6 v, e, D,
d(l(_;tXB) = Fxg — Bxg — DXp

11.3. An oil stream is heated as it passes through two well-mixed tanks in series (Exercise
1.11). Assuming constant physical properties, develop the nonlinear state-space model for
this process to predict the time evolution of the temperatures in both tanks. State your
assumptions clearly and explicitly.

Solution:

In this problem the state variables are T;,T,. Possible time-varying inputs are the heat
input and the oil flow rate.

Since the volumes are assumed constant we only need to perform an energy balance
around each tank

Total energy balance can be formulated as:

[Accumulation of total energy]  [Input of total energy] [Output of total energy]
time - i time

time _ _
.\ [Energy supplied by the coil ]
time

E=U+KE+PE,

where U is the internal energy, KE is the kinetic energy and PE is the potential energy.
Since the tank is not moving,



dKE _dPE _

—=—=0.
dt dt
Thus

dE_du

dt  dt’
and for liquid systems,

du _ dH,

dt dt

where, Hr is the total enthalpy of material in the tank. H may be written as,

pAhC p (T - Tref )

where T - is the reference temperature. The energy balance for Tank 1 may be written
as:

dlpV,C, (T, =T
(p - p(gtl re )) = pFCp(Tin _Tref )_ pFCp(Tl _Tref )"’ Q

Assuming T = 0, we will have:
V, an) _ FTi, —FT, 9

dt PCy
dizi(Tin ~Ty)+ 2
dt Vv, pCV;
Similarly for Tank 2 we have
dT, F
—==—(T,-T
at v, (T -T2)

Thus the set of Equation representing the dynamic of the temperatures in the tanks is
given by

d(Tl)ziT- —-FT, + Q

d?Tt) 't m peeh
=—(T,-T

dt vz(1 2)




The equations are ‘slightly’ nonlinear due to the multiplication between the flow rate and
the temperatures. Rearranging and taking the Taylor series expansion,

an _F

=— (T, —Ty) +
dt Vl( in 1)

Q
= f,(F,T.,Q
n 1(F.T1,Q)

F
~ l:v_l (Tin —T1) +

QV:| +a1(|:—Fs)+a2(T1—T15)+a3(Q_QS)
P o

dT, F
— 2o (T, -Ty) =1, (F, Ty, T
dt V2(1 2) 2( 1 2)

F
z{V—(Tl —Tz)} + by (F — Fs) + by (Ty = Tys) +ba(To —Tas)
2 ss

We can see that the constant coefficients are given as:

a _6f1 _(Tin _Tls).a _8f1 _Fs.a _8f1| _ 1
1= = Ay =—— = Az = =
OF | V, oMil, Vi aQl,  pcpVy
b _ofy _(Tls_TZS).b _ofy —Fs'b oy —F
L= = =" =5 3= =
oF ss V, 0Ty s V, a1, s v,

By subtracting the steady-state equation and defining deviation variables (like
F =F — F,), we obtain the following equations:

an _ aF +a,T; +a3Q

dt

dT. - —
d_t2 = blF + b2T1 + b3T2

11.4. Consider the stirred-tank heater shown in Figure 11.3. The steam is injected directly
in the liquid. A, is the cross sectional area of the tank. Assume that the effluent flow rate

is proportional to the liquid static pressure that causes its flow.

1. Identify the state variables of the system.
2. Determine what balances you should perform.
3. Develop the state model that describes the dynamic behavior of the system.
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Figure 11.3: Stirred tank heater
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Solution:

a) State Variables: h, T,
b) Total mass and energy balance.

Total mass balance

accumulation _ input  output
time time  time

d(pAh)
dt

= pF - pF, +Q
At constant density:

A—=F-F,+—~ Equation 1

Total energy balance

accumulation _ input  output
time time  time

E=U+KE+PE,

where U is the internal energy, KE is the kinetic energy and PE is the potential energy.
Since the tank is not moving,



dKE _ dPE _

dt dt
Thus
dE_du
dt  dt’
and for liquid systems,
du _ dH,
dt dt

where, Hy is the total enthalpy of material in the tank. Total mass in the tank is
pV = pAh.
H may be written as,
pARC (T -T,, )
where T . is the reference temperature. The input of total energy into the tank is:
pFH, +AH

where, AH is the heat supplied by 40 psi steam per unit volume. The output of total
energy from the tank is: pF,H,. The energy balance may be written as:

d (IOVC p (TZ - Tref »
dt

= pF,C, (T, ~ T )= pF,C, (T, T )+ AH

Substituting for pV = pAh, we get

d (pAhC p (TZ - Tref ))
dt

— pFC (T, =T )- pF,C, (T, =T )+ AH

ref

Assuming T = 0, we will have:

A d(hTZ) =RT,-FT,+ AR
dt
p
Using the product rule:
A) sy o

dt dt dt



Substituting this into the above equation, we get:

LR e L By L

Ah—2
dt C, dt

From Equation 1, we have the term A% in the above equation. Therefore, the energy
balance results in the following equation:

andTz FT,-F,T, +ﬂ—T2(Fl ~F, +9j
dt /<, P

Simplifying results in the following equation:

Ahdd% =FT, -FT, +£—T2 Q Equation 2

PC, P

11.5. Most separation processes in the chemical industry consist of a sequence of stages.
For example, sulfur dioxide present in combustion gas may be removed by the use of a
liquid absorbent (such as dimethylalanine) in a multistage absorber. Consider the three-
stage absorber displayed in Figure 11.4.
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Figure 11.4: Schematic of a three-stage absorber.
This process is modeled through the following equations?:

dx
r—1

it =K(y; —=b)— @+ S)x; + X,

rddit?’:SX2 —(1+ S)x;3 + X;

H is the liquid holdup in each stage and assumed to be constant, and x and y represent
liquid and vapor compositions, respectively. Also, z =H /L is the liquid residence time,
S =aG/L is the stripping factor and K =G/L is the gas-to-liquid ratio. A and b are
constants.
a. How many variables are there? How many equations (relationships)? What is
the degree of freedom?
b. Is this system underdetermined or overdetermined? Why?

% Seborg, D.E, T.F. Edgar. D.A. Mellichamp, Process Dynamics and Control, Wiley



c. What additional relationships, if necessary, can you suggest to reduce the
degrees of freedom to zero?

Solution:
All relevant symbols are given below:

a,b,H (Constants)
X1, X2, X3, X5 ,Y1,Y2,Y3,Y,S,K,G, L,z (13 variables)

Here we also included the gas phase compositions (of SO,) although they do not appear
explicitly in the modeling equations. We have three equations that result from the
application of the component balances in each stage and three defining equations for
three variables (given in the problem statement). One can also write the following
equilibrium relationships that must be satisfied at each stage:

Xj = f,(y,) i =1,2,3
With these, we have a total of nine equations. The degree of freedom analysis yields:
F=13-9=14

This is an underdetermined system. To fully define the system and have a feasible
control problem, we need to remove four degrees of freedom. We can do that by the
following specifications:

1. The SO, content of the liquid feed should be zero (there is no reason why
dimethylalanine should contain any SO,). xf =0

2. The feed gas composition y; can be considered as a disturbance as it would be

defined by the operation of upstream units.

3. Similarly, the flow rate of the gas stream may be a considered as a disturbance
because the operation of upstream units (furnaces) may vary.

4. A control problem can be defined. One can suggest a feedback control mechanism
that would measure the SO, composition in the gas phase, ys3, and according to the

specified target, y3ager, manipulate the flow rate of the liquid, L. That establishes a

relationship through the feedback mechanism as follows:
L=1f(ys)

Hence, we now have one specification, two disturbances, and a feedback mechanism,
resulting in four new relationships, thereby reducing the degrees of freedom to zero.

11.6. Consider a liquid chromatography for the separation of a mixture containing N
components. Assuming that the process is isothermal, and there are no radial



concentration gradients, the following governing equations for solute j in the mobile
phase and on the adsorbent can be obtained:
oc, oc; e )8qj o d%c
Ug—+&—+1-&)— =
o Tt ot " oz

0q; S|
a_tJ:ka,jCij,j(l_g;q_m)—kd,jqj'

j

In this model, c is the concentration of solute in the mobile phase, and q is the adsorbate
concentration. Also, u, is the superficial velocity, & and &, are column void fraction and

total void fraction respectively, D, is the axial dispersion coefficient, g, is the maximum
adsorbate concentration, and k,; and kg ; are the adsorption and desorption rate
constants for solute j respectively.

1. How would you classify this system of equations? Why?

2. How many variables are there? How many equations (relationships)? What is the
number of degrees of freedom?

3. Is this system underdetermined or overdetermined? Why?

4. What additional relationships, if necessary, can you suggest to reduce the degrees
of freedom to zero?

Solution:

a. This model should be classified as a nonlinear, distributed model. Distributed
models provide relationships for state variables as functions of both space and time,
whereas a non-distributed (lumped) model will only depend on time. It is also
nonlinear as one can see the terms involving multiplication of state variables.

a. For N components, we have c;and q; as the state variables. One can also consider

the velocity u, to be a variable as the throughput for the chromatography column

may change. Then, we have the following parameters:
ka,j ) kd,j ’qm,j €1 € D|_

This yields 5N+4 variables. We have 2N equations. The degrees of freedom at this
point are:
F=(BN+4)-2N =3N +4
Can we come up with more relationships? Following assumptions are appropriate:
e Void fractions (¢, ¢,) are constant.

e Maximum adsorbate concentration g, ; is a constant.

This yields N + 2 additional relationships. The adsorption and desorption rate constants
can vary with time during the chromatographic process. They can also be related to the



intrinsic adsorption/desorption rate constants (Lin et al., Ind. & Eng. Chem. Research,
1998). We will assume that they can be expressed as:

Kaj = F(Kgj»OmjrCoireeer)
kavj = f(ka,ijm,jicoyi, ..... )

This yields 2N more relationships. Finally, the dispersion coefficient can be expressed
as:

d.u
P70 _0.2+0.011Re%*
DL
In summary, we have
F=GBN+4)-(N+2)-2N-1=1

Thus, the degree of freedom is one.

b. The system is underdetermined because F =1> 0.

c. What we, as process control engineers, would do is to use a controller to affect one
variable by manipulating another variable, thus providing one additional relationship
and reducing F to 0. For example, it might be advantageous to control the exit
concentration of one of the species by manipulating the velocity (or the flow through)
Ug. The feedback yields one additional relationship between two variables, thus

reducing the degrees of freedom to zero.

11.7. Consider a distillation process (Figure I1.5) with the following assumptions: binary
mixture, constant pressure, constant relative volatility, constant molar flows, no vapor
holdup, equilibrium on all stages, and a total condenser. The modeling equations are
given as follows:
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Figure 11.5: Schematic of the distillation column




Total material balance on stage i:

% =L, -L+V,-V,

Material balance for light component on stage i:

dmx) |

dt i+1 |+l L X +V| 1y| -1 iyi

The above equations apply to all stages except the top (condenser), the feed and the
bottom (reboiler) stages.
From the assumption of constant molar flows and no vapor dynamics, we arrive at the
following expression for the vapor flows:
Vi—l :Vi =V
The liquid flows depend on the liquid holdup on the stage above. We may use Francis'
Weir formula:

Li = f(mi)

The vapor composition y; is related to the liquid composition x; on the same stage
through the vapor-liquid equilibrium relationship:

ox;

S @-1x

Feed Stage: i=ng

dm.
—— =L, -L+Vi, -V +F
dt
d
(m ) - I-|+1 i+1 L X +V| 1y| -1 yi + I:ZF
dt
Total Condenser: i=ny
dm.
—=-L,+V,,-D=V,,-R-D
dt
d(m,x
( ) -Lix +Vi,Yi, —Dxp =V, Y, —(R+D)xp

dt



Reboiler: i=1

dm.
—= i+1 _Vi -B= Li+1_B_V
dt
d(m. x.
: dItXI) =L Xy —ViVs = BXg =Ly X —(B+V)Xg

1. How many variables are there in this model? How many equations

(relationships)? What is the degree of freedom?

Is this system underdetermined or overdetermined? Why?

3. What additional relationships, if necessary, can one suggest to reduce the degrees
of freedom to zero?

N

Solution:
Variables:

mi; L X vi VB, DiF;ze R
Thus, we have 4N+6 variables and o is a parameter to be specified.
Equations:
2N differential equations and 2N algebraic equations —4N Equations
Degrees of freedom DOF=6

System is underdetermined since DOF>0

We need to specify some variables and/or define possible control loops to reduce the
DOF to zero.

Feed conditions F and zr are specified from conditions elsewhere in the plant
(disturbances) this reduces the degrees of freedom to 4.

We can define the following control loops which will add additional relationships among
the variables:

Distillate flow rate (D) can be adjusted to control the level of the condenser drum
Bottom flow rate (B) can be adjusted to control the level of the reboiler

Reboiler heat duty can be adjusted to control the amount of vapor in the system
Reflux flow rate can be adjusted to control the composition on the top of the
column

This will reduce the degrees of freedom (DOF) to zero



11.8. For the single-stage flash unit introduced earlier in Exercise 11.2, derive the transfer
function between the overhead mole fraction of the more volatile component and its feed
mole fraction.

Solution:

We assumed constant molar holdup, hence, we have the following component balance:

H d(xg) _F

Using the equilibrium relationship (and also the fact that T and P are constant), we have:

Xp = KXg
This results in,
H d(xp)
K dt

B

B
= FXg —(E+ DjxD

H d(xp) B
T9Xp) gy [ELp
K dt XF (K+ }D

_FX_{B+KD}
F K D

In standard form

H d(xp) KF

Xg — X
B+KD dt B+kD = P
d(xp)
T +Xp =kx
dt D F
where 7 and k = KF )
B+ KD B+ KD

This is a linear equation (as all flows are constant now). Defining deviation variables,

|

x|

D =Xp —Xps
F=Xp

_XF,s

And taking Laplace transform and rearranging, we have the following transfer function:



XD (S) + Xp (5) = kX (S)

Xo(s) =%xp ©)

_Xp(s) _ k
909 = XE (8) s+l

where we have

and k KF

"B+ KD "B+ KD

11.9. A liquid-phase isothermal reaction takes place in a continuous stirred-tank reactor.
The reaction is first-order,
A—>B r=kC,
We assume that the vessel has a constant volume, operates isothermally (constant
temperature) and is well mixed.

For this system:
1. Derive the process transfer function between the outlet (tank) concentration and
the feed concentration of component A.
2. Obtain the time evolution of the concentration as function of the feed
concentration and the process parameters. Hint: use partial fraction expansion.

3. For the design and operating parameters, F,=01mol/m®, V =2m?,
C,, =01mol/m®, k =00501/min and AC,, =1mol/m®, calculate the outlet
concentration when t =V /(F +Vk) and when t = 40 min

Solution:

From Example 4.5 in the book, the state equation for our reactor that provides the time
evolution of the reactant composition is given as

dC F F
a v Oy O

Rewriting



dc, (F F
+|—+k|C,=—C

dt [v j“ v o

(V) e, - F e,

F+Vk) dt F +Vk

dCtA +C, =kC,,

T

Note that k in the last equation is the steady-state gain. Defining deviation variables and
taking Laplace transform to both sides of the equation

SCA(S) +Ca(s) =kC o (s)
(s++1)CA(S) =kCag(s)

Ca(s)=Ca-Cas and Cap =Cao -Caos

Finally,
Cals) k
Cao(s) (s ++1)
FO
where: 7 = and k = .
F, +Va F,+Va

To obtain the time domain solution, we use partial fraction technique

_ M AC — k M

Cou(s)=r -2 (5= M

o (9) s S »(8) (s++1) s
1 A B

(s+1)s s (s+1

s=0 S _As, Bs _ i_A
(s+D)s s (ss+1 @
s=-1/x (s +1) :A(zs+1)+B(zs+1):B 1 __,_B
(s+1)s S (s+1 -1/z

6A(s)=k|v|(§+ B j:km[l— ’ j
s (s+1) s (541

Inverting (using Table of Laplace functions)



—-t/r

- j: kM({1—e )

e

C,(t)=kM [1—1

Substituting

Fo

CA(t) = CAS + E

ot

~ACy (1—e)

For the conditions
F =0.1m*/min V =2m® C,, =0.8mol/m® & = 0.0501/min AC ,, = 1mol/m®

First we need to find the steady-state value for the concentration Cas.

dc,

T " +C, =kC,,

At steady-state

0.1

Cac =kCage = — 04
As = A0S =51 20.05

08=04

Substituting for this value
0.1
C,())=04+——— 11-eV"
a0 0.1+20.05 ( )

CA(t)=0.4+05(1-e")

Fort=r C,(t)=0.4+0.5 (1-0.3679) =0.7161
T= v = 2 =10
F+Vk 0.1+20.05

Ca(t) =0.4+05(L—e )= 0.4+05(1-e ")
For t=40 min —0.4+0.5(1-0.0183)
—0.4+0.498 = 0.8908

Figure 11.S1 illustrates a plot of the concentration as function of time.



Figure 11.S1: Concentration response as function of time.

11.10. Consider the same liquid-phase, isothermal, continuous stirred-tank reactor as in
Exercise 11.9 where the component balance can also be expressed in terms of the product
concentration.

1. Derive the process transfer function between the outlet (tank) concentration
for component B (product) and the feed concentration of component A.

2. Obtain the time evolution of the concentration as a function of the feed
concentration and the process parameters and compare your results with those
of Exercise 11.9.

3. Assuming the same design and operating conditions as before what is the
value of the concentration when t =V /(F +Vk) and t = 40 min?

Solution:

Balance on Cg

dC F
dtB :_VCB +kCA
dC F
dtB +(VJCB = kCA
(XJ Torc,=e,
F) dt \Y
dC

Tld—tB-l—CB =leA



where kj is the new steady-state gain.

7,5C, +C, =k,C,
(r;5+1)C, =k,C,

C, Kk
C, (5,541
V Fk
- k=
nTE "7y
C.(s) Kk
Cpo(s) (++1)
Thus,
C_B C_IA(S) 3 k K,
C,Culs) (s++1) (r,5+1)
C Kk,

6AOB(s) T (s ++)(r,s+1)

63 (S) = kkl M
(s++1)(r,5+1) s

Inverting using the Laplace Table,

T,—T,

C_:B (t) = kklM [1+ 7«-1 e—t/z’1 _ TZ e_t/TZJ
Tz Z'l

= kklM(1+ (z'le_”’1 —Tze_”’2 )]

T, =T

— F F
C.(t) = —AC,.|1+
o (V) (F +VK) Vk A"(

—t/ —t/
(Tle 1R )
T, 0

F =0.1m*/min V =2m® C,, =0.8mol/m® & = 0.0501/min AC ,, = 1mol/m®

T= v = 2 =10
F+Vk 0.1+20.05

=2 20
0.1



L 0.1 [“ 1
(0.1+2 0.05) (20.05)\  20-10

—0.5(L+0.1(10e *** — 20e /%))

(1Oe—t/10 _20e ' )j

Steady-state value

CBs = kCAs
Cas=0.4 then
Co=Cp=-2t 04-04
VK 2 0.05
For t=1
Cy(t) = 0.4+0.5(L+0.110e " —20e /%)) = 0.4774
For t=40

Cy(t) = 0.4+ 0.5(1+0.1(10e°"*® — 206 ))= 0.7738
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Figure 11.S2: Plot of the concentrations as function of time.

11.11. Consider the same liquid-phase isothermal continuous stirred-tank reactor as in
Exercise 11.9 but now the reaction is second-order,

A—>B r=kC:

=

Obtain a linear state-space model for this system.

2. Derive the process transfer function between the outlet (tank) concentration and
the feed concentration of component A.

3. Compare the characteristic parameters with those of Exercise 11.9 and discuss.



Solution:

From Example 4.5 in the book, the state equation for our reactor that provides the time
evolution of the reactant composition is given as

dC F F
at v Cw Ty kG

We have to linearize,

VKC} = (VKCZ,) + (2VKC , )(C, ~C )
Substituting

V d;:tA =F(C, —C,)—(VKC:) + (2VKC, )(C, —C,.)
At steady-state,
0=F(C,y —C,)—VKCZ
Substracting
dC,
V=3t = FlCu =C) = (Cos =Cu) ]+ (VKC,)(C, = Co)
v d;:tA =F[(C,, -C,)]+ (2vkc,,)C,
dC, — = =
V i FC,, —FC, +(2VkC,)C,
= Fc_:AO - [F + (2VkCAs)]6A
\% dC, +C, = LEAO
F +2VkC,, dt F +2VKC

where:
Vv F

r=—— and k=— ——
F +2VkC F +2VkC

and the definition of the steady-state gain should be clear. Taking Laplace transform of
both sides of the equation

75(_:A (s)+ C_:A (s)= I(C_:Ao (s)
(55 ++1)C,(s) = kC ,, (s)



Finally,

To obtain the time domain solution, we use partial fraction technique

— M AC — k M
C,.(s) = — = =20 C,(s) = -
o (9) s S »(8) (5++1) s

1 A B

(s+1)s s (s5+1

S As Bs

=0 =2 = —=A

(s+D)s s (ss+1 @
_ (s+1)  A(ss+1)  B(ss+1) 1
s= 1L (s+1)s s " (s +1 =B 17 r=8

CA(s)sz(§+ & j:klvl(l— d J
s (is+1) s (s+1)

Inverting (using Table of Laplace functions),

-t/z

- j —kM(1-e")

e

C,(t) =kM (1—1
Substituting

F
C,t)=C,, +—————AC, [L-e"'"
(0=Cot e ACwl-e )

For the conditions
F =0.1m*/min V=2m?® C,, =0.8mol/m® & =0.0501/min AC ,, =1mol/m*

First we need to find the steady-state value for the concentration Cps. At steady-state,

F F
OZVCAO —vCA—ka\
0=FC,, - FC, —kVCZ

0=0.08-0.1C,, —0.1C>,



Roots are -1.5247 and 0.5247, Thus Cas=0.5247 since the other root is negative.
Substituting this value

C (1) =0.5247 + 01 (L-evr)
0.1+2 2 0.05 0.5247

C,(t)=05247 +0.4879(1—e ')

11.12. Consider the same liquid-phase isothermal, continuous, stirred-tank reactor as in
Exercise 11.11 and now allow for the possibility that the vessel volume may also change.
The reaction is still second-order and the outlet flow rate depends linearly on the liquid
volume in the tank.
1. What are the state variable(s), input variable(s) and output variable(s)? Obtain a
linear state-space model for this system.
2. Derive the process transfer function between the outlet (tank) concentration of
component A and the feed flow rate.
3. What are the poles and zeros of this transfer function?

Solution:
The model equations are given as:

dC F, ,
—~=-9(C,-C)-kC
5~y Co=C)
dv
E:FO_F:FO_W

Here C is the tank concentration, V is the tank volume, F is the flow rate, and the
subscript O refers to inlet conditions. k and /S are constants.

The state variables are composition C and volume V. Input variables would be inlet
concentration and inlet flow rate. The output variables would depend on control
objectives. We would typically be interested in maintaining a constant yield in the
reactor (hence constant outlet composition) and constant level (or volume) to ensure
constant residence time. Outputs can be the outlet composition and the volume (the state
variables).

The first equation (component balance) can be classified as nonlinear, hence requiring the
application of Taylor expansion. The second equation (total mass balance) is already in
linear form.

dC F
EZVO(CO —C)—kCZ = fl(FO;CO)V!C)
dv

= F,-F=F,— AV =1,(F,,C,,V,C)



The Taylor expansion of the first equation yields:

dC of of
E; fl(FO,s’CO,s'Vs’Cs)+ : (Co_co,s)"'a_1 (Fo _Fo,s)
O FO,S’CO,S'VS’CS in FO,S’CO,S’VS’CS
f
al C-c)+ ot v -V,)
aC FO,stO,ststs 6 FO,stO,ststs

The derivatives can be calculated as follows:

of, _ [ Fos } 4
Cole cove LV
_ |:Co,s ~C, } b
Fo.s:Co.5:Vs,Cs VS

F
= {— D 2kcs} =cC
Fos:Cos:Vs.Cs VS

_ |:_ FO,S(CO,S B Cs)j| —d
Fos:Cos:Vs,Cs Vs2

The first equation becomes

o,
ok,

ofy

oC

o,
oV

((jj_(t: = fl(FO,s'CO,s'Vs’Cs) + a(CO _CO,s) + b(FO - FO,S) + C(C _Cs) + d(V _Vs)

By defining deviation variables like C =C-Cq,

and recognizing that
0= f(F,.Cy, Vs, C,), we have,

9C _ 4G, +bF, +cC +dV
dt

The second equation can also be manipulated by subtracting the steady-state equation,

(jj_\:: Fo—pV _(Fo,s _ﬂ\/s)z(FO - FOnS)_’B(V _VS)

And by defining deviation variables,

dvi = -
_t:Fo_ﬂv



To define the state-space model, define x, =C,x, =V,u, =C,,u, = F,,y, = X, Y,

This leads to
X(| |c d x1+abu1
X | [0 =B x| |0 1]u,
Iyl 1 0fx
- y2] [0 1] %,
Taking the Laplace transform of both linear equations, we get,

sC (s) = aC,(s) + bF,(s) + cC (s) + dV (s)
sV (s) = Fy(s) - AV (5)

We need to find the transfer function,

From the second equation,

Substitute in first equation,

sC(s) = a@(s)+blf0(s)+c5(s)+dilfo(s)
S+ /[

Collecting terms,

CEH)= 2 o)+ R+
s—cC s—cC Ss—cs+/f

d 1=
SR

Fo(s)

6(3):£Q(s)+sic{b+

Hence,

9(s)=— [b

S—-C

N d | bs+bg+d
s+8| (s=c)s+p)

The poles and zeros come from the roots of the following polynomials:

bs+bg+d=0 and (s—c)(s+p)=0

11.13. A bioreactor is represented by the following model that uses the Monod kinetics:

=X,.



—=(u-D)x

dt (u )1

dx,
—~%=(4-Xx,)D—-2.51x
qt ( 2) HAq

Here x; is the biomass concentration, X, is the substrate concentration, and D is the
dilution rate. The specific growth rate x depends on the substrate concentration as

follows:

0.53x,
p=
0.12+X,

In this system, we are interested in controlling the biomass concentration using the
dilution rate, at the steady-state defined by, x;; =1.4523,x,, =0.3692,D, =0.4.

1. Obtain a linear state-space model for this system.
2. Derive the process transfer function for this system.

3. What is the order of this process?
Solution:

We start with the following expansion,

dx of
d—t1=(,u—D)X1 = fl(xmxsz); fl(XlS7XZS'Ds)+§ (Xl_xls)+
1lss
of, L
+— (X, =X, )++— (D-D
, ss( 2 25) 8D sS( s)
dX2 6f2
_:(4_X2)D_2-5/JX1 = fz(Xlixz’D); fZ(Xls’XZS’Ds)+67 (Xl_Xls)+
1lss
of
+—2 (X, =X, )++—= (D-D
(4 =x.) #4532 (D-D,)

2ss

The derivative terms can be calculated as follows,
A { 0.53x, _D} o

o). L0124,

a, = of, | _ 0.53xl(0.12+xz)—20.53x1x2 _ 0.3866
%, |, (0.12+x,) .
of

b= =5 = [-x ], =-1.4523




3 _of,| | 25(0.53x,) _1
2 0.12+ X,
a,, _oh | 044 2.5x1(0.53(0.12+x22—0.53x2) _ 13649
Xy |, (0.12+x,) «
of
b,=—% =|4-x,|, =3.6308
2 oD [ 2]ss

This yields the following state space form of the model, after defining the deviation

variables:

X 0 0.3866 | X, -14523|
% | |-1 -136|x,| | 3.6308

y=[ O{fl}zci
XZ

To obtain the transfer function model, we need to take Laplace transform of the linear

model,

SXy (S) =a; X (S) +a, X, (S) + blu (S) =a,X, (5) + b1u (5)
SX, (S) =3y % (5) +axyX; (S) + bzu(s)

Solve the second equation for x,(s)and replace in the second,

() = 2(8) |, Bu(s)

S—a,, S—a,,

a126‘21)(1 (S) + alzbzu(s) + blU (S)
S—a,, S—a,,

SX (s)=

Now, we have to collect the terms for the transfer function, and recognize that

y(s) = x,(s),
& — g(s) — b132+ (bzaiz — b1a22)
u(s) ST —a@pS—apay

This is a second-order system.

[1.14. A process model is given:



with the initial conditions, x(0) = x'(0) =0.

1. Using Laplace transformation, find the solutions of this model when a =1 and a
=3.

2. Plot the solution x(t) on one graph and discuss the effect of the parameter a on
the solution.

Solution:

Taking the Laplace transform of this expression yields
S2X (s) +asX (s) + X (s) _1
s

X (s)(s® +as +1) :%

And,

1
X($)=—F—=
s(s“+as+1)

When a =1, using the quadratic formula for the second order polynomial, we have the

complex roots,

1.3

S=——+-"j
27 ]

Thus, the Partial Fraction Expansion will look like:

X (s) = 1 _A B C

s{s+;+\/§j][s+l—\/§jJ s [s+l+\/2§jJ [s+1—\/§jJ

2 2 2

Multiplying both sides by s and evaluating the expressionat s =0,

Multiplying both sides by (s +%—§ jJ, and evaluating the expression at this root, we

have,



B=—>-—
6J
And similarly,
C:_1+£j
2 6
Thus, we have,
1 3 1 V3. 1 V3
1, 276!  Tote! 1. 7o 6
X(s) ==+ ==+
s V3 J3.) s V3 V3
R S+————] S+ +—— ] S+ +—— ]
2 2 2 2 2 2 2 2
From the Laplace Transform tables, we observe that,
[1{ p }:pe—r
S+r
Thus, we have
_1 L (1+ﬁjj
Vs 2 —_Te 2 2
1 43, 2
S+ + ]
2 2

We also note the identity,

e(GC2 Dt — e& (cosC,t + jsinC,t)

By completing the inverse transform, this results in,

V3, V3. 3

X(t) =1+ 2e 2| —0.5c0s >t — Zsin 7t

The case with a =3 can be done in a similar manner. The result will be:

X(t) =1+0.17e 2% _1,17¢ 7038




Figure 11.S3 shows the behavior of x(t) as a function of time for both cases. Note the
oscillatory response when a =1 (blue line).

0.8 7

0.4 7

0 2 4 6 8 10 12 14 16 18 20

Figure 11.S3: Plot of x(t) for the cases in Exercise 11.14.

11.15. For the process discussed earlier in Exercises 1.11 and 1.3, where an oil stream is
heated as it passes through two well-mixed tanks in series and assuming constant
physical properties, develop the transfer functions between the second tank temperature
(output), T,, and the heat input (manipulated variable), Q and the flow rate (disturbance),

F . T, can be assumed as constant (what if it is not?).
Solution:

The equations are ‘slightly’ nonlinear due to the multiplication between the flow rate and
the temperatures. Rearranging and taking the Taylor series expansion,



dT, F Q
Sl (M -T)+——= f,(F.T,
dt Vl (TO 1) + ’a::pv:l 1( 1 Q)

pv1

~ Fa- Q _ - _
f{wm m+mvl:qw F)+a,(T-T.)+(Q-Q.)

dT F
—L= _(Tl _Tz) = fz(F’Tl’Tz)

dt Vv,
F
z[V—(Tl—Tz)} +b,(F = F.) + b, (T, = T,.) + b,(T, — T,.)

2

We can see that the constant coefficients are given as:

_i _(TO_Tls). _i __Fs. _i _ 1
a = - &y = - 83 = -
oF |, V, oL, W Ql, eV,
Loy (M -T.,. o R &, -F
b=22 = b,=—2 ="%:b = =
oF < V2 8Tl « V2 aT2 . V2

By subtracting the steady-state equation and defining deviation variables (like
F = F - F,), we obtain the following equations:

aT, = = =
d—tlzaiF +a,T, +3,Q
e b +b,T, +bT,

Taking the Laplace transformation,

sT,(s) = a,F (5) +,T,(5) + a,Q (3)
ST,(8) = BF (5) +b,T(5) + 5T, (5)
and rearranging,

Q(s)

T(6) = F () + —
s—a, s—a,

_ . b - b, =
O =2y FO+ 2T

Replacing the first equation into the second equation and rearranging again,



T()=—2 F(e)+— 2 { % F(o) 2 Q)
s—b, s—b, S—

T,(s) = blb {nsal }E(swsbz a3a Q)

-a, —-b, s—
The transfer functions can now be identified,

T, ,(8) =0 F(s)+ gTQ6(S)

bs—ab +ab = ash, =
L0 o Ys—a,) O b )ea) 2

11.16. A continuous pre-fermenter shown in Figure 11.6 is used as the first stage of cheese
manufacture?.

Skim milk

Y

SSXP
.

3
Acidified milk

Figure 11.6: Continuous pre-fermenter.

The pre-fermenter is supplied by skim milk (substrate) and the cheese starter (cells) and
operated at 30°C. The pH of the acidified skim milk is measured using a pH sensor. In
Figure 11.6, X;, S; and P; denote the cell concentration, the lactose concentration and
the lactic acid concentration in the feed stream, respectively. Since the flow rate of the
cheese starter is very small compared to the skim milk flow rate, the lactose

concentration in the feed is neglected. This process is modeled using the following mass
balance equations:



dX

V"= —FX 4 i, XV
dt 3 :umax
vd—stlsf ~-FS-0,, XV
dt
Vd—P:—F3P+7rmaXXV
dt

The following definitions are also given:

U = ] ﬂg[H_+J
" K+ R HT K,
oo|H”
O_max: [ T B >
Ko+ [H [+ [H T K,
7y|H™*
ﬂ-maxz r b r >
Kys+[H J+[H T 1K,

Here, ., Omaxs ZTmax are the maximum specific growth rate, the maximum specific

lactose consumption rate and the maximum specific production rate, respectively. The
dependency between the pH and the lactic acid concentration is expressed through the
following correlation:

max

—log,,|H " |= pH = 6.701- 0.9564P + 0.2050P? — 0.02134P°

The dilution rate is defined as F,/V, and F,/F; is the seed feed rate. Operating and
design parameters are given in Table 11.2.

1. What are the steady-state operating conditions for this process? How many of
them correspond to non-trivial operation? (Hint: The steady-state can be
considered as dependent on pH)

2. Linearize the model equations around a steady-state point determined above.

3. Comment on the stability of the system around this steady-state.

Solution:

Recognizing that the inlet flow rate needs to equal the outlet flow rate to maintain
constant volume, we have,

F=F,

The dilution rate is defined as:



Fs

D=-3
\Y

This yields the following rephrased model equations:

dXx

—= -D)X

it (#mex — D)

ds

E: D(Sf _S)_O-maxx
® o bPiz_ X

dt

The steady condition can be obtained from this equation by setting the differential terms
to zero. In this case, the steady-state conditions can be gleaned from a visual inspection
of these equations. The first steady-state would be the trivial (wash-out) solution with:

X,=0;S,=5;;P, =0

The second steady-state condition can be obtained by observing that the first equation
would vanish when g, =D.

The steady-state condition then is dependent on the value of D and what the fermenter pH
is. We can set up a MATLAB program that would calculate the steady-state conditions as
a function of pH. In fact, we can develop a plot of D vs pH. For a given value of pH, we
can obtain the steady-state values of the variables X, S and P along with D. Here is the
program that calculates the steady-state at a pH of 6.

%Steady-states for the prefermentor - Exercise 11.16
%initial guesses

x0(1)=0.3; %this is X

x0(2)=45; %this is S

x0(3)=1.5; %this is P

x0(4)=0.36; %this is D

%Calculation of steady-state

x = Fsolve(@prefermenterfun,x0,optimset("Display”, "iter"));

function F = prefermenterfun(x)
H=1e-6;
Sf=50.3;
XF=5.4;
Pf=5.9;
mu0=0.51;
pi0=3.35;
sigma0=6.02;
kh1=9_0e-08;
kh2=6_.85e-06;
kh3=1_.5e-07;
kh4=3.91e-06;



kh5=4.88e-08;

kh6=4.2e-06;

mu=muO0*H/ (kh1+H+H"2/kh2);
sigma=sigma0*H/ (kh3+H+H"2/kh4) ;
pi=pi0*H/ (kh5+H+H"2/Kh6) ;
Fl=(mu-x(4))*x(1);
F2=x(4)*(SF-x(2))-sigma*x(1);
F3=-x(4)*x(3)+pi*x(1);
F4=6_.701-0.9564*x(3)+0.2050*x(3)"2-0.02134*x(3)"3+10g10(H) ;
F=[F1 F2 F3 F4];

return

This generates
Xs=0.1404; S=48.8432; P,=0.8856 and Ds=0.4126

One can do this calculation for a range of pH values from 5.5 to 6.7. This yields the plot
in Figure 11.54. It shows that for a large range of pH values there are two values of the
dilution rate thus creating multiple steady-states. Thus, the conclusion would be that there
are a maximum of three steady-states (including the wash-out).
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041

0.4F

0.391

0.38

0.37F
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0.35F

0.34 L L L L L L L
5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7

pH

Figure 11.54: Plot of D vs pH.

The linearization can be performed around one of these states (select a pH value) and
would result in the following equation:

X Himax — D 0 /L_lmaxX X
S =| ~ Omax -D - Emax X S
B

b 0 -D+7 X|P

max



Here the state matrix is evaluated at the steady-state values and the bar notation indicates
differentials with respect to P (through H"). Of course, since we can ignore the wash-out,

and recognizing D = g, , the equation can be rephrased as:

X 0 0 T X
S|=|-0,, -D -&,X |S
P T 0 —-D+7z X|P

The stability can be inferred from the eigenvalues of the state matrix. We can write the
characteristic equation as,

-2 0 .. X
detA-Al|=| -0, -D-2 -5, X
n 0 -D+z X-4

See the paper by Funahashi and Nakamura (2007) for further discussion.
11.17. A process is modeled by the following equations:

dx

Zd_tl = -2, +exp(—X;) — 3u; X,
dt 1+ X,

The control objectives dictate the following output equations:

Y1=X1
Yo =Xp

1. Find the four transfer functions relating the outputs (yi, Y2) to the inputs

(U, uy).

2. Solve the equations with the conditions, u;(t) = 1, uy(t) =1, y;(0) =0, and
y2(0) =0.

3. Plot the output responses. What is the steady-state reached by the outputs?

Solution:

We start by linearizing the nonlinear equations, recognizing that we have two state
variables and two inputs in the state equations. The first equation yields:



%z f (% X5, Up,Up)

dt
of of
= fl(Xls'XZS’uls’u25)+_l (X = Xyg) +—+ (X = X50) +
1 X1 X25:Ups Uz 2 X151 %25, U1s,Uzs

of

+— (ul_uls)+_l (U, —Uy)
aul Xls'XZSY'Jls!qu 2 Xlsrx25vu15!u25

It can be put into the form,

dx,
E = all(xl - Xls) +a, (Xz - Xzs) + b11(u1 - uls) + b12 (Uz — Uy

Also recognizing the fact that f;(X;s, Xos,Uss,Uys) =0 from the steady-state condition.

Note that the coefficients are given as follows:

a, :2—:(115.5. =[-1-0.5exp(x,,)]
b :%s,s, =[-1.5u,, ]

b, :%s,s, = [~1.5%,, |

by, = % =0

. - . dx
One can derive the coefficients of the second equation —2 = f,(xq, X,, Uy, U,) also as
at 2\Xq, X2, Uy, Up

follows:
_of |2
“ X s.s 1+ X5
azzzi = —1+(2X15)_2(1+2X25)
X, 5.5, 1+ Xp5)
by, = af—z =0
Oty S.S.
of
byy = 8_2 =4
Uz |s.s.




We define the deviation variables:

Xp = X1 = X5, Xp = Xg = Xpg;Up = Up — Ugg; Up = Up —Ups.
This results in the following linear equations:

dx; _ _ _
gt = ay1X +a1,%p + byl
dx, _ % 4 bonll
ot = a1 Xy +a Xy +0polUy

If we take the Laplace transform of both equations, we have:

X1 (8) = 811X (S) + a12X,(S) + by Uy (s)
X2 (S) = A1 X1 (S) + @ Xo () + byl (S)

Note that y;(s) = x;(S); Y2 (S) = X,(s). Rearranging, and making the substitutions,

A by

Y1(8) = Yo (s) + up(s)
S—ag S—ayg

_ a _ b _

Ya(S) = 2l yi(s) + 22 U, (s)
S—ay S—ay

and making the substitutions,

_ a a _ b _ _
y(s) = 02 [ 20y (s)+ 222 Uz(s)}‘ P (s)
S—aj|S—ay S—ay s

Yo(s) = 228 [ B2y (s)+ m@)}fiuz(s)

S—ay | S—agn; S—a

Collecting the terms, we end up with the following transfer functions,

yi(s) _ by (s —ap)

ui(s) (s—ayp)(s—az)—apan
yi(s) _ bay,

Uy(s) (s—ag1)(s—ag) —apan
Y2(s) _ bys8p

up(s) (s—ap)(s—ag)—apay
Ya(s) _ bop (s —ayy)

Uy(s) (s—ay)(s—agp)—apay




Here are the two files needed to solve the problem in MATLAB.

%File odehmwk.m

%solution of a set of ODEs

clear all

dt=0.1;

t=[0:dt:10];

x0=[0;0];

[T Y] = ode45("odeeq”,[0 10], xO0);

plot (T,Y);

%File odeeq.m

%ODEs

function dy=odeeq(t,y)

ul=1;

u2=1;

dy=[0.5*(-2*y(1)-3*ul*y(2)+exp(-y(1)))
-y(2)+2*y(1)/(1+y(2))+4*u2];

return

The plot obtained is given in Figure 11.S5 (x; is becoming negative and X, is increasing):

4

Figure 11.S5: Time response for x; and Xj.

The steady state values can be obtained by simply typing the following on the command
line (Last entries of the matrix Y):
» whos



Name  Size Bytes Class

T 89x1 712 double array
Y 89x2 1424 double array
dt 1x1 8 double array
t 1x101 808 double array
x0 2x1 16 double array
Grand total is 371 elements using 2968 bytes
» Y(89,1)
ans =
-1.7727
» Y(89,2)
ans =
3.1444

The Simulink block diagram is shown in Figure 11.S6.
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Figure 11.56: Schematic of the model implemented in Simulink.

11.18. Following state-space model is given,

X:Ax+Bu.
y =Cx



with

-2 1 0 0
A=|-3 0 3 [B=[3[C=[1 0 0]
-1 0 -3 1

Determine the eigenvalues of the state matrix. Also, find the transfer function model for
this system. Report the poles and zeros of this transfer function. Obtain the response of
this model to a step change in the input.

Solution:

We need to define the matrix A first and then issue the eig command in MATLAB:

» A=[-210;-303;-10-3]

A=

2 1 0
-3 0 3
-1 0 -3
» eig(A)
ans =

-0.8054 + 1.7006i
-0.8054 - 1.7006i
-3.3892

To find the transfer function model we can use the following sequence (after defining B
and C also):

» [num,den]=ss2tf(A,B,C,0);
» g=tf(num,den)

Transfer function:

s"3+5s"2+9s+12

The poles and zeros can be obtained in various ways. Here is one:

» pole(g)

ans =
-3.3892
-0.8054 + 1.7006i
-0.8054 - 1.7006i



» zero(g)
ans =
-4.0000

Note that the eigenvalues and the poles are the same. Here is the command for obtaining
the step response and the resulting output response plot in Figure 11.S7:

» step(g)

Step Response
From: U(1)

Amplitude

L L L
0 1.4 2.8 4.2 5.6

Time (sec.)

Figure 11.57: Step response of the output variable.

11.19. A state-space model is given:
x|_[-2405 0 x| [ 7
X,| | 0.833 —2.238|x,| |-1.117
Xy
=10 1
y=| ]Lj

Find the transfer function g(s) where y(s) = g(s)u(s). Determine the poles and zeros.

Solution:

There are various methods to obtain the transfer function for this system. By taking
Laplace transform of each equation, we obtain:

X, (S) = —2.405x%, (S) + 7u(s)
SX, (s) = 0.833x, (s) —2.238x, (s) —1.117u(s)



The output equation yields,
y(s) =%, (8)

By rearranging the state equations and solving for x,(s),

1 1.117s + 3.145
X, (s) =

(s+2.238)| s+2.405

Thus,

~1.117s +3.145
y(s) = u(s)
(s +2.238)(s + 2.405)

We have the following poles and zeros:
z, =+2.8156

p, =-2.238
p, =-2.405

We can also obtain the transfer function thorough the following expression (that can be
easily derived using the Laplace transform rules):

y(s) _ _ _p-l
E—g(s)—c(sl A )B

where 1 is the identity matrix.
Another way is to use MATLAB with the following commands:

» A=[-2.405 0;0.833 -2.238];
» B=[7;-1.117];

» C=[0 1];

» D=0;

» [num,den]=ss2tf(A,B,C,D);
» g=tf(num,den)

Transfer function:
-1.117 s + 3.145

g(s) = -mmmmmmmmmmememeeen
s"2 +4.643 s + 5.382



11.20. A chemical reactor has been operating at steady-state for a long time with the feed
flow rate kept constant at 3.5 m*/min. To handle a projected increase in upstream
capacity, the operator decides to increase the feed flow rate suddenly by 10%, resulting in
a change in the outlet stream composition recorded in Table I1.2. Using the process
reaction curve method, obtain an empirical transfer function model for this process.

Table 11.2: Composition data in response to a change in flow rate.

Time (min) | Change (gmol/m®) | Time (min) | Change (gmol/m°)
0 0 1.6 0.35

0.2 0 1.8 0.5

0.4 0 2 0.55

0.6 0.02 3 0.7

0.8 0.1 4 0.9

1 0.15 5 0.95

1.2 0.2 6 1

1.4 0.3 8 1

Solution:

The transfer function model that will be used in this method is given by:

K s
§)=——ge"®
9(s) s+1

The parameter K can be determined from the steady-state information:

k :ﬂ:i:Z.SB
Au  0.35

One can use either the graphical method or the method that uses the output variable
solution. If you are using the equation-based method, you have to recognize the fact that
the Example 6.1 is for a specific input (unit step change) only, and in this problem the
change is 0.35 m*/min. The latter gives:

In(kM —yj:_t—tD _ Lt
T

kM T T
Select two points on the graph:
t=14,y=0.3
t=3,y=0.7

We have the following equations:



—0.357=—H+tﬂ

T T
—1.2:—§+t£
T T

They result in:
7=1.9min;tp =0.38min

So the transfer function is:
2.86 _o3ss

908) =95 +1°

Graphically, one can show the result in Figure 11.S8.
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Figure 11.S8: Plot of the composition data as in Table 11.2.

Note that this method yields, tp =0.5min;7=3.2-0.5=2.7min. The discrepancy
results from the uncertainties built into each method.

11.21. An experiment is performed on a shell-and-tube heat exchanger that heats a
process stream with medium-pressure steam. In the experiment, the steam valve is
opened an additional 5% in a stepwise manner. The resulting temperature response of the
process outlet stream is given in Figure I1.7. Determine the process model parameters
using the reaction curve method, and estimate the inaccuracies due to the data and
calculation methods as discussed in Chapter 6.
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Figure 11.7: Temperature response of the outlet process stream.
Solution:

Using the Process Reaction Curve Method, we first identify the constant k by considering
the ultimate value of the temperature and the magnitude of the input change,

_10°C
5%

k =2°CI%

Then, we draw an estimated tangent to the inflection point of the response and two points
on the graph are noted as shown below (Figure 11.S9).
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Figure 11.59: Illustration of the graphical approach.

This yields the following estimates of the other parameters:

The transfer function representing the response of the process stream temperature with
respect to the steam flow rate, then, looks like,

-S

9(s) = =
S

5s+1

11.22. For the vertical tube double-pipe heat exchanger in Exercise 1.12, a set of open-
loop experiments are carried out to study the system dynamics. The data can be
downloaded from the authors’ web pages (see Preface) and consists of:

e Outlet temperature of the vertical tube heat exchanger (stream 2) under variations
of the flow rate of stream 1 (manipulated variable).

e Outlet temperature of the vertical tube heat exchanger (stream 2) under variations
of the flow rate of stream 2 (disturbance).



e Outlet temperature of the vertical tube heat exchanger (stream 2) under variations
of the feed temperature (stream 2) (disturbance).

The data are normalized as follows:
e Flow rate % = (actual flow rate - 0)/7800*100
(7800 is the span range on the DCS)
e Temperature % = (actual temperature-32)/(212-32)*100
For this system:
1. Obtain the process transfer functions between the inputs (manipulated variable,
disturbance) and the outlet temperature.
2. Try alternative model structures and discuss the results.

Solution:

Changes in flow rate F602

Using the complete data file for all changes in the input variable we obtain the following
fit (Figure 11.510)

Process Variable
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g
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ﬁn‘e,zgec
Figure 11.510: Fit of the model to the data.

The corresponding transfer function is given by (using nonlinear regression)

T602(s) 0.138e01s
F602(s) (1.99s+1)

g,(s) =

However, if we use only the first portion of the data, corresponding to the first step test
up to time 20 seconds), we obtain a fit as illustrated in Figure 11.S11.
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Figure 11.511: Fit of the model to the data.
The corresponding transfer function is given by

_ T602(s) 0.173e-01s
F602(s) (3.015+1)

g,(s)

Using the middle portion of the data we have (Figure 11.512)
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Figure 11.512: Fit of the model to the data.

T602(s) 0.14e70213s
F602(s) (1.25s+1)

9p(8) =

Similar studies can be performed using the other two portions of the data to analyze the
variability of the process dynamic against positive and negative changes as well as the
magnitude of the step.



The differences are due to the nonlinear characteristics of the process. We can also
appreciate that the transfer function obtained using the whole data set provides some kind
of average for the systems dynamics when dealing with positive and negative changes
and should be used for control design purposes.

Using as a test a second order plus delay model (SOPTD) we obtain (Figure 11.S13)
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Figure 11.513: Fit of the model to the data

T602(s) 0.135e 015
F602(s) (2.009s +1)(0.0083s +1)

g,(s)=

However, the addition of complexity into the model does not add accuracy into the
prediction thus a FOPTD model will be used for further processing. Also notice that tone
of the time constants is very small compared to the other meaning that a first order plus
delay model is a good choice for the process.

Changes in flow rate F601

Assuming a FOPTD model we obtain the fit as shown in Figure 11.514.
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Figure 11.514: Fit of the model to the data.



This response clearly is not appropriate for the system’s dynamics.

Selecting a second order model plus delay and lead element and after some manual
adjustment of the model parameters, we have he fit shown in Figure 11.S15.

TEL

Fa0l

Figure 11.515: Fit of the model to the data.

T602(s) —0.0572(-2.5 +1)e-02752s
F601(s) (3.693s +1)(0.0296)

9a1(8) =

which provides a more proper representation of the process dynamics and more
importantly allows us to match the inverse response behavior of the process.

Changes in the inlet process stream temperature (T601)

We have for the overall fitting (using the whole data set), Figure 11.S16.
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Figure 11.516: Fit of the model to the data.

0.3996e 01

902(8) = (4.435 +1)

Using the first portion of the data we obtain the fit as shown in Figure 11.S17.
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Figure 11.517: Fit of the model to the data.
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Using the middle portion of the data we have a fit a shown in Figure 11.S18.
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Figure 11.518: Fit of the model to the data.

T602(s) 0.2874e-01s
T602(s) (2.466s +1)

Ug2(8) =

The best model in this case is an average between the last two cases, that is

T602(s) 0.20e-012s
T601(s) (3.0s+1)

942(8) =

Thus finally the model for the VTHX unit is given as follows



T602(s) = 0138808 oo gy 4 (F0.0572)(-2.545 + De-o27sz
(1.995 1 1) (3.693s + 1)(0.0296s + 1)
0.20e-0125

+—
(3.0s+1)

F601(s)

T601(s)

Final verdict on model selection:
For the manipulated variable changes, a simple FOPDT model is enough.

For the disturbances in inlet process stream flow rate, to be able to represent the more
complex dynamics involved, a first-order model with a lead and a delay term is
necessary. This is the only model to be able to represent the inverse response behavior.

Why these types of response for a disturbance change?

We have two effects acting together in opposite ways and at different time scales. One is
a convective effect because the change of the amount of total flow coming into the heat
exchanger and the other is a thermal effect since the temperature of the incoming feed has
changed. The convective effect is immediate (incompressible fluid) and acts in the first
instance, and the thermal effect takes some time to have an impact on the system (the
time for the change to travel through the heat exchanger).

11.23. Bioreactors are used to produce a variety of pharmaceuticals, and food products. A
simple bioreactor model involves biomass and substrate. The biomass consists of cells
that consume the substrate. Following material balance equations are derived for a
bioreactor”,

dx,

—==(u—D)x

at (u )%

dx LIX
d_tzzD(XZf _Xz)—Tl

Here, D is the dilution rate, x, is the biomass concentration, X, is the substrate
concentration, X,; is the feed concentration of the substrate, and Y is the yield with
Y =0.4. The specific growth rate x for a system with substrate inhibition is given as,

— /umaxXZ
2
Ky + X, + Ky X5

® Bequette, B.W., Process Dynamics: Modeling, Analysis and Simulation, Prentice Hall (1998).



The constants are given as, k, =0.129/L;k, =0.4545L/Q; u,., =0.53hr".  The
steady-state  values of the input and the state variables are,
D, =0.3hr™; x, =1.5302; X, =0.1745.

Construct a simulation of this process in MATLAB/Simulink. By introducing small step
changes in the dilution rate, observe the biomass response. Develop a discrete-time
model (see Eq. 6.9) for this system using the step-response data.

Solution:

The Simulink block diagram for the bioreactor model is given in Figure 11.S19.
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Figure 11.519: Simulink diagram for bioreactor model.



Staring from an initial condition of x;, = x,, =1.0, the biomass and substrate response
for D = 0.3 is given in Figure 11.520.
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Figure 11.520: The response of biomass (solid) and substrate (dashed) from an initial
condition of x;, = X,, =1.0.

Figure 11.S21 shows the response of the biomass concentration for a series of step
changes in the dilution rate. We will use the first half of this response data for modeling
and the second half for validation.
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Figure 11.521: Set of step changes in dilution rate results in this biomass response.

We will show the results for a first-order and a second-order model. Following are the
forms of the model:
First-order: y(i+1) = —a, y(i) + byu(i)

Second-order: y(i+1) =—a,y(i) —a, y(i —1) + byu(i) + b,u(i —1)

The parameter matrix is formed and calculated as follows for the second-order model,
pi+D=[-y() -y(i-D u@) u(i-]
0=[a a, b b,

The parameters obtained using the LS algorithm are:

First-order: a; =-0.4443;b, = -0.1157
Second-order: a; =-1.0817;a, =0.1167;b, =-0.1673;b, = 0.1584

The results of the validation and cross-validation simulations are shown in Figures 11.522
and 11.523. There is general agreement but the models perform poorly in predicting the
steady-states. This is most likely due to the nonlinear nature of the actual process.
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Figure 11.522. Validation of first-order model (a) and second-order model (b), actual
data (line), model prediction (dashed).



0.06 T T T T T T T T T
0.05F pmrenmeananne i

0.041 i a

0.03F ’ 4

.................

0.02

-0.01f

-0.03|

0.04 1 . I ) I 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time

(@)

0.06 T T T T T T T T T

0.04f H i

0.02 H B

-
-~

-0.02

-0.04

Time

(b)
Figure 11.523. Cross-validation of first-order model (a) and second-order model (b),
actual data (line), model prediction (dashed).



