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Conditional probability

Conditioning on evidence

1. s© A spam filter is designed by looking at commonly occurring phrases in spam. Suppose
that 80% of email is spam. In 10% of the spam emails, the phrase “free money” is used,
whereas this phrase is only used in 1% of non-spam emails. A new email has just arrived,
which does mention “free money”. What is the probability that it is spam?

Solution: Let S be the event that an email is spam and F be the event that an email
has the “free money” phrase. By Bayes’ rule,

P (S|F ) =
P (F |S)P (S)

P (F )
=

0.1 · 0.8
0.1 · 0.8 + 0.01 · 0.2 =

80/1000

82/1000
=

80

82
≈ 0.9756.

2. s© A woman is pregnant with twin boys. Twins may be either identical or fraternal (non-
identical). In general, 1/3 of twins born are identical. Obviously, identical twins must
be of the same sex; fraternal twins may or may not be. Assume that identical twins are
equally likely to be both boys or both girls, while for fraternal twins all possibilities are
equally likely. Given the above information, what is the probability that the woman’s
twins are identical?

Solution: By Bayes’ rule,

P (identical|BB) =
P (BB|identical)P (identical)

P (BB)
=

1
2
· 1

3
1
2
· 1

3
+ 1

4
· 2

3

= 1/2.

3. According to the CDC (Centers for Disease Control and Prevention), men who smoke are
23 times more likely to develop lung cancer than men who don’t smoke. Also according
to the CDC, 21.6% of men in the U.S. smoke. What is the probability that a man in
the U.S. is a smoker, given that he develops lung cancer?

Solution: Let S be the event that a man in the U.S. smokes and L be the event that he
gets lung cancer. We are given that P (S) = 0.216 and P (L|S) = 23P (L|Sc). By Bayes’
rule and the law of total probability, we have

P (S|L) =
P (L|S)P (S)

P (L|S)P (S) + P (L|Sc)P (Sc)
=

P (L|S)P (S)

P (L|S)P (S) + 1
23
P (L|S)P (Sc)

.

We don’t know P (L|S), but it cancels out! Thus,

P (S|L) =
0.216

0.216 + (1− 0.216)/23
≈ 0.864.

4. Fred is answering a multiple-choice problem on an exam, and has to choose one of n
options (exactly one of which is correct). Let K be the event that he knows the answer,
and R be the event that he gets the problem right (either through knowledge or through
luck). Suppose that if he knows the right answer he will definitely get the problem right,
but if he does not know then he will guess completely randomly. Let P (K) = p.
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(a) Find P (K|R) (in terms of p and n).

(b) Show that P (K|R) ≥ p, and explain why this makes sense intuitively. When (if ever)
does P (K|R) equal p?

Solution:

(a) By Bayes’ rule and the law of total probability,

P (K|R) =
P (R|K)P (K)

P (R|K)P (K) + P (R|Kc)P (Kc)
=

p

p+ (1− p)/n .

(b) For the extreme case p = 0, we have P (K|R) = 0 = p. So assume p > 0. By the
result of (a), P (K|R) ≥ p is equivalent to p+ (1− p)/n ≤ 1, which is a true statement
since p + (1 − p)/n ≤ p + 1 − p = 1. This makes sense intuitively since getting the
question right should increase our confidence that Fred knows the answer. Equality
holds if and only if one of the extreme cases n = 1, p = 0, or p = 1 holds. If n = 1, it’s
not really a multiple-choice problem, and Fred getting the problem right is completely
uninformative; if p = 0 or p = 1, then whether Fred knows the answer is a foregone
conclusion, and no evidence will make us more (or less) sure that Fred knows the answer.

5. Three cards are dealt from a standard, well-shuffled deck. The first two cards are flipped
over, revealing the Ace of Spades as the first card and the 8 of Clubs as the second card.
Given this information, find the probability that the third card is an ace in two ways:
using the definition of conditional probability, and by symmetry.

Solution: Let A be the event that the first card is the Ace of Spades, B be the event
that the second card is the 8 of Clubs, and C be the event that the third card is an ace.
By definition of conditional probability,

P (C|A,B) =
P (C,A,B)

P (A,B)
=
P (A,B,C)

P (A,B)
.

By the naive definition of probability,

P (A,B) =
50!

52!
=

1

51 · 52

and

P (A,B,C) =
3 · 49!

52!
=

3

50 · 51 · 52
.

So P (C|A,B) = 3/50.

A simpler way is to see this is to use symmetry directly. Given the evidence, the third
card is equally likely to be any card other than the Ace of Spades or 8 of Clubs, so it
has probability 3/50 of being an ace.

6. A hat contains 100 coins, where 99 are fair but one is double-headed (always landing
Heads). A coin is chosen uniformly at random. The chosen coin is flipped 7 times, and it
lands Heads all 7 times. Given this information, what is the probability that the chosen
coin is double-headed? (Of course, another approach here would be to look at both sides
of the coin—but this is a metaphorical coin.)

Solution: Let A be the event that the chosen coin lands Heads all 7 times, and B be the
event that the chosen coin is double-headed. Then

P (B|A) =
P (A|B)P (B)

P (A|B)P (B) + P (A|Bc)P (Bc)
=

0.01

0.01 + (1/2)7 · 0.99
=

128

227
≈ 0.564.
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7. A hat contains 100 coins, where at least 99 are fair, but there may be one that is double-
headed (always landing Heads); if there is no such coin, then all 100 are fair. Let D be
the event that there is such a coin, and suppose that P (D) = 1/2. A coin is chosen
uniformly at random. The chosen coin is flipped 7 times, and it lands Heads all 7 times.

(a) Given this information, what is the probability that one of the coins is double-
headed?

(b) Given this information, what is the probability that the chosen coin is double-
headed?

Solution:

(a) Let A be the event that the chosen coin lands Heads all 7 times, and C be the event
that the chosen coin is double-headed. By Bayes’ rule and LOTP,

P (D|A) =
P (A|D)P (D)

P (A|D)P (D) + P (A|Dc)P (Dc)
.

We have P (D) = P (Dc) = 1/2 and P (A|Dc) = 1/27, so the only remaining ingredient
that we need to find is P (A|D). We can do this using LOTP with extra conditioning
(it would be useful to know whether the chosen coin is double-headed, not just whether
somewhere there is a double-headed coin, so we condition on whether or not C occurs):

P (A|D) = P (A|D,C)P (C|D) + P (A|D,Cc)P (Cc|D) =
1

100
+

1

27
· 99

100
.

Plugging in these results, we have

P (D|A) =
227

327
= 0.694.

(b) By LOTP with extra conditioning (it would be useful to know whether there is a
double-headed coin),

P (C|A) = P (C|A,D)P (D|A) + P (C|A,Dc)P (Dc|A),

with notation as in (a). But P (C|A,Dc) = 0, and we already found P (D|A) in (a). Also,
P (C|A,D) = 128

227
, as shown in Exercise 6 (conditioning on D and A puts us exactly in

the setup of that exercise). Thus,

P (C|A) =
128

227
· 227

327
=

128

327
≈ 0.391.

8. The screens used for a certain type of cell phone are manufactured by 3 companies,
A, B, and C. The proportions of screens supplied by A, B, and C are 0.5, 0.3, and
0.2, respectively, and their screens are defective with probabilities 0.01, 0.02, and 0.03,
respectively. Given that the screen on such a phone is defective, what is the probability
that Company A manufactured it?

Solution: Let A,B, and C be the events that the screen was manufactured by Company
A, B, and C, respectively, and let D be the event that the screen is defective. By Bayes’
rule and LOTP,

P (A|D) =
P (D|A)P (A)

P (D|A)P (A) + P (D|B)P (B) + P (D|C)P (C)

=
0.01 · 0.5

0.01 · 0.5 + 0.02 · 0.3 + 0.03 · 0.2
≈ 0.294.
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9. (a) Show that if events A1 and A2 have the same prior probability P (A1) = P (A2),
A1 implies B, and A2 implies B, then A1 and A2 have the same posterior probability
P (A1|B) = P (A2|B) if it is observed that B occurred.

(b) Explain why (a) makes sense intuitively, and give a concrete example.

Solution:

(a) Suppose that P (A1) = P (A2), A1 implies B, and A2 implies B. Then

P (A1|B) =
P (A1, B)

P (B)
=
P (A1)

P (B)
=
P (A2)

P (B)
=
P (A2, B)

P (B)
= P (A2|B).

(b) The result in (a) makes sense intuitively since, thinking in terms of Pebble World,
observing that B occurred entails restricting the sample space by removing the pebbles
in Bc. But none of the removed pebbles are in A1 or in A2, so the updated probabilities
for A1 and A2 are just rescaled versions of the original probabilities, scaled by a constant
chosen to make the total mass 1.

For a simple example, let A1 be the event that the top card in a well-shuffled standard
deck is a diamond, let A2 be the event that it is a heart, and let B be the event that it
is a red card. Then P (A1) = P (A2) = 1/4 and P (A1|B) = P (A2|B) = 1/2.

10. Fred is working on a major project. In planning the project, two milestones are set up,
with dates by which they should be accomplished. This serves as a way to track Fred’s
progress. Let A1 be the event that Fred completes the first milestone on time, A2 be
the event that he completes the second milestone on time, and A3 be the event that he
completes the project on time.

Suppose that P (Aj+1|Aj) = 0.8 but P (Aj+1|Acj) = 0.3 for j = 1, 2, since if Fred falls
behind on his schedule it will be hard for him to get caught up. Also, assume that the
second milestone supersedes the first, in the sense that once we know whether he is
on time in completing the second milestone, it no longer matters what happened with
the first milestone. We can express this by saying that A1 and A3 are conditionally
independent given A2 and they’re also conditionally independent given Ac2.

(a) Find the probability that Fred will finish the project on time, given that he completes
the first milestone on time. Also find the probability that Fred will finish the project on
time, given that he is late for the first milestone.

(b) Suppose that P (A1) = 0.75. Find the probability that Fred will finish the project
on time.

Solution:

(a) We need to find P (A3|A1) and P (A3|Ac1). To do so, let’s use LOTP to condition on
whether or not A2 occurs:

P (A3|A1) = P (A3|A1, A2)P (A2|A1) + P (A3|A1, A
c
2)P (Ac2|A1).

Using the conditional independence assumptions, this becomes

P (A3|A2)P (A2|A1) + P (A3|Ac2)P (Ac2|A1) = (0.8)(0.8) + (0.3)(0.2) = 0.7.

Similarly,

P (A3|Ac1) = P (A3|A2)P (A2|Ac1) + P (A3|Ac2)P (Ac2|Ac1) = (0.8)(0.3) + (0.3)(0.7) = 0.45.

(b) By LOTP and Part (a),

P (A3) = P (A3|A1)P (A1) + P (A3|Ac1)P (Ac1) = (0.7)(0.75) + (0.45)(0.25) = 0.6375.
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11. An exit poll in an election is a survey taken of voters just after they have voted. One
major use of exit polls has been so that news organizations can try to figure out as
soon as possible who won the election, before the votes are officially counted. This has
been notoriously inaccurate in various elections, sometimes because of selection bias:
the sample of people who are invited to and agree to participate in the survey may not
be similar enough to the overall population of voters.

Consider an election with two candidates, Candidate A and Candidate B. Every voter
is invited to participate in an exit poll, where they are asked whom they voted for; some
accept and some refuse. For a randomly selected voter, let A be the event that they voted
for A, and W be the event that they are willing to participate in the exit poll. Suppose
that P (W |A) = 0.7 but P (W |Ac) = 0.3. In the exit poll, 60% of the respondents say
they voted for A (assume that they are all honest), suggesting a comfortable victory for
A. Find P (A), the true proportion of people who voted for A.

Solution: We have P (A|W ) = 0.6 since 60% of the respondents voted for A. Let p =
P (A). Then

0.6 = P (A|W ) =
P (W |A)P (A)

P (W |A)P (A) + P (W |Ac)P (Ac)
=

0.7p

0.7p+ 0.3(1− p) .

Solving for p, we obtain

P (A) =
9

23
≈ 0.391.

So actually A received fewer than half of the votes!

12. Alice is trying to communicate with Bob, by sending a message (encoded in binary)
across a channel.

(a) Suppose for this part that she sends only one bit (a 0 or 1), with equal probabilities.
If she sends a 0, there is a 5% chance of an error occurring, resulting in Bob receiving a
1; if she sends a 1, there is a 10% chance of an error occurring, resulting in Bob receiving
a 0. Given that Bob receives a 1, what is the probability that Alice actually sent a 1?

(b) To reduce the chance of miscommunication, Alice and Bob decide to use a repetition
code. Again Alice wants to convey a 0 or a 1, but this time she repeats it two more times,
so that she sends 000 to convey 0 and 111 to convey 1. Bob will decode the message by
going with what the majority of the bits were. Assume that the error probabilities are
as in (a), with error events for different bits independent of each other. Given that Bob
receives 110, what is the probability that Alice intended to convey a 1?

Solution:

(a) Let A1 be the event that Alice sent a 1, and B1 be the event that Bob receives a 1.
Then

P (A1|B1) =
P (B1|A1)P (A1)

P (B1|A1)P (A1) + P (B1|Ac1)P (Ac1)
=

(0.9)(0.5)

(0.9)(0.5) + (0.05)(0.5)
≈ 0.9474.

(b) Now let A1 be the event that Alice intended to convey a 1, and B110 be the event
that Bob receives 110. Then

P (A1|B110) =
P (B110|A1)P (A1)

P (B110|A1)P (A1) + P (B110|Ac1)P (Ac1)

=
(0.9 · 0.9 · 0.1)(0.5)

(0.9 · 0.9 · 0.1)(0.5) + (0.05 · 0.05 · 0.95)(0.5)

≈ 0.9715.
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13. Company A has just developed a diagnostic test for a certain disease. The disease
afflicts 1% of the population. As defined in Example 2.3.9, the sensitivity of the test is
the probability of someone testing positive, given that they have the disease, and the
specificity of the test is the probability that of someone testing negative, given that they
don’t have the disease. Assume that, as in Example 2.3.9, the sensitivity and specificity
are both 0.95.

Company B, which is a rival of Company A, offers a competing test for the disease.
Company B claims that their test is faster and less expensive to perform than Company
A’s test, is less painful (Company A’s test requires an incision), and yet has a higher
overall success rate, where overall success rate is defined as the probability that a random
person gets diagnosed correctly.

(a) It turns out that Company B’s test can be described and performed very simply: no
matter who the patient is, diagnose that they do not have the disease. Check whether
Company B’s claim about overall success rates is true.

(b) Explain why Company A’s test may still be useful.

(c) Company A wants to develop a new test such that the overall success rate is higher
than that of Company B’s test. If the sensitivity and specificity are equal, how high
does the sensitivity have to be to achieve their goal? If (amazingly) they can get the
sensitivity equal to 1, how high does the specificity have to be to achieve their goal? If
(amazingly) they can get the specificity equal to 1, how high does the sensitivity have
to be to achieve their goal?

Solution:

(a) For Company B’s test, the probability that a random person in the population is
diagnosed correctly is 0.99, since 99% of the people do not have the disease. For a
random member of the population, let C be the event that Company A’s test yields the
correct result, T be the event of testing positive in Company A’s test, and D be the
event of having the disease. Then

P (C) = P (C|D)P (D) + P (C|Dc)P (Dc)

= P (T |D)P (D) + P (T c|Dc)P (Dc)

= (0.95)(0.01) + (0.95)(0.99)

= 0.95,

which makes sense intuitively since the sensitivity and specificity of Company A’s test
are both 0.95. So Company B is correct about having a higher overall success rate.

(b) Despite the result of (a), Company A’s test may still provide very useful information,
whereas Company B’s test is uninformative. If Fred tests positive on Company A’s test,
Example 2.3.9 shows that his probability of having the disease increases from 0.01 to
0.16 (so it is still fairly unlikely that he has the disease, but it is much more likely than
it was before the test result; further testing may well be advisable). In contrast, Fred’s
probability of having the disease does not change after undergoing Company’s B test,
since the test result is a foregone conclusion.

(c) Let s be the sensitivity and p be the specificity of A’s new test. With notation as in
the solution to (a), we have

P (C) = 0.01s+ 0.99p.

If s = p, then P (C) = s, so Company A needs s > 0.99.

If s = 1, then P (C) = 0.01 + 0.99p > 0.99 if p > 98/99 ≈ 0.9899.

If p = 1, then P (C) = 0.01s+ 0.99 is automatically greater than 0.99 (unless s = 0, in
which case both companies have tests with sensitivity 0 and specificity 1).
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14. Consider the following scenario, from Tversky and Kahneman:

Let A be the event that before the end of next year, Peter will have installed
a burglar alarm system in his home. Let B denote the event that Peter’s
home will be burglarized before the end of next year.

(a) Intuitively, which do you think is bigger, P (A|B) or P (A|Bc)? Explain your intuition.

(b) Intuitively, which do you think is bigger, P (B|A) or P (B|Ac)? Explain your intuition.

(c) Show that for any events A and B (with probabilities not equal to 0 or 1), P (A|B) >
P (A|Bc) is equivalent to P (B|A) > P (B|Ac).

(d) Tversky and Kahneman report that 131 out of 162 people whom they posed (a)
and (b) to said that P (A|B) > P (A|Bc) and P (B|A) < P (B|Ac). What is a plausible
explanation for why this was such a popular opinion despite (c) showing that it is
impossible for these inequalities both to hold?

Solution:

(a) Intuitively, P (A|B) seems larger than P (A|Bc) since if Peter’s home is burglarized,
he is likely to take increased precautions (such as installing an alarm) against future
attempted burglaries.

(b) Intuitively, P (B|Ac) seems larger than P (B|A), since presumably having an alarm
system in place deters prospective burglars from attempting a burglary and hampers
their chances of being able to burglarize the home. However, this is in conflict with
(a), according to (c). Alternatively, we could argue that P (B|A) should be larger than
P (B|Ac), since observing that an alarm system is in place could be evidence that the
neighborhood has frequent burglaries.

(c) First note that P (A|B) > P (A|Bc) is equivalent to P (A|B) > P (A), since LOTP
says that P (A) = P (A|B)P (B) + P (A|Bc)P (Bc) is between P (A|B) and P (A|Bc) (in
words, P (A) is a weighted average of P (A|B) and P (A|Bc)). But P (A|B) > P (A) is
equivalent to P (A,B) > P (A)P (B), by definition of conditional probability. Likewise,
P (B|A) > P (B|Ac) is equivalent to P (B|A) > P (B), which in turn is equivalent to
P (A,B) > P (A)P (B).

(d) It is reasonable to assume that a burglary at his home might cause Peter to install
an alarm system and that having an alarm systems might reduce the chance of a future
burglary. People with inconsistent beliefs about (a) and (b) may be thinking intuitively
in causal terms, interpreting a probability P (D|C) in terms of C causing D. But the
definition of P (D|C) does not invoke causality and does not require C’s occurrence to
precede D’s occurrence or non-occurrence temporally.

15. Let A and B be events with 0 < P (A ∩ B) < P (A) < P (B) < P (A ∪ B) < 1. You are
hoping that both A and B occurred. Which of the following pieces of information would
you be happiest to observe: that A occurred, that B occurred, or that A∪B occurred?

Solution: If C is one of the events A,B,A ∪B, then

P (A ∩B|C) =
P (A ∩B ∩ C)

P (C)
=
P (A ∩B)

P (C)
.

So among the three options for C, P (A ∩B|C) is maximized when C is the event A.

16. Show that P (A|B) ≤ P (A) implies P (A|Bc) ≥ P (A), and give an intuitive explanation
of why this makes sense.

Solution: By LOTP,

P (A) = P (A|B)P (B) + P (A|Bc)P (Bc).
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So P (A) is between P (A|B) and P (A|Bc); it is a weighted average of these two con-
ditional probabilities. To see this in more detail, let x = min(P (A|B), P (A|Bc)), y =
max(P (A|B), P (A|Bc)). Then

P (A) ≥ xP (B) + xP (Bc) = x

and
P (A) ≤ yP (B) + yP (Bc) = y,

so x ≤ P (A) ≤ y. Therefore, if P (A|B) ≤ P (A), then P (A) ≤ P (A|Bc).
It makes sense intuitively that B and Bc should work in opposite directions as evidence
regarding A. If both B and Bc were evidence in favor of A, then P (A) should have
already reflected this.

17. In deterministic logic, the statement “A implies B” is equivalent to its contrapositive,
“not B implies not A”. In this problem we will consider analogous statements in prob-
ability, the logic of uncertainty. Let A and B be events with probabilities not equal to
0 or 1.

(a) Show that if P (B|A) = 1, then P (Ac|Bc) = 1.

Hint: Apply Bayes’ rule and LOTP.

(b) Show however that the result in (a) does not hold in general if = is replaced by ≈.
In particular, find an example where P (B|A) is very close to 1 but P (Ac|Bc) is very
close to 0.

Hint: What happens if A and B are independent?

Solution:

(a) Let P (B|A) = 1. Then P (Bc|A) = 0. So by Bayes’ rule and LOTP,

P (Ac|Bc) =
P (Bc|Ac)P (Ac)

P (Bc|Ac)P (Ac) + P (Bc|A)P (A)
=
P (Bc|Ac)P (Ac)

P (Bc|Ac)P (Ac)
= 1.

(b) For a simple counterexample if = is replaced by ≈ in (a), let A and B be independent
events with P (A) and P (B) both extremely close to 1. For example, this can be done in
the context of flipping a coin 1000 times, where A is an extremely likely (but not certain)
event based on the first 500 tosses and B is an extremely likely (but not certain) event
based on the last 500 tosses. Then P (B|A) = P (B) ≈ 1, but P (Ac|Bc) = P (Ac) ≈ 0.

18. Show that if P (A) = 1, then P (A|B) = 1 for any B with P (B) > 0. Intuitively, this says
that if someone dogmatically believes something with absolute certainty, then no amount
of evidence will change their mind. The principle of avoiding assigning probabilities of
0 or 1 to any event (except for mathematical certainties) was named Cromwell’s rule
by the statistician Dennis Lindley, due to Cromwell saying to the Church of Scotland,
“think it possible you may be mistaken”.

Hint: Write P (B) = P (B ∩A) + P (B ∩Ac), and then show that P (B ∩Ac) = 0.

Solution: Let P (A) = 1. Then P (B ∩Ac) ≤ P (Ac) = 0 since B ∩Ac ⊆ Ac, which shows
that P (B ∩Ac) = 0. So

P (B) = P (B ∩A) + P (B ∩Ac) = P (A ∩B).

Thus,

P (A|B) =
P (A ∩B)

P (B)
=
P (A ∩B)

P (A ∩B)
= 1.
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19. Explain the following Sherlock Holmes saying in terms of conditional probability, care-
fully distinguishing between prior and posterior probabilities: “It is an old maxim of
mine that when you have excluded the impossible, whatever remains, however improb-
able, must be the truth.”

Solution: Let E be the observed evidence after a crime has taken place, and let
A1, A2, . . . , An be an exhaustive list of events, any one of which (if it occurred) would
serve as an explanation of how the crime occurred. Assuming that the list A1, . . . , An
exhausts all possible explanations for the crime, we have

P (A1 ∪A2 ∪ · · · ∪An|E) = 1.

Sherlock’s maxim says that

P (An|E,Ac1, Ac1, . . . , Acn−1) = 1,

i.e., if we have determined that all explanations other than An can be ruled out, then the
remaining explanation, An, must be the truth, even if P (An) and P (An|E) are small.
To prove Sherlock’s maxim, note that

P (Ac1, . . . , A
c
n−1|E) = P (Ac1, . . . , A

c
n−1, A

c
n|E) + P (Ac1, . . . , A

c
n−1, An|E),

where the first term on the right-hand side is 0 by De Morgan’s laws. So

P (An|E,Ac1, Ac1, . . . , Acn−1) =
P (Ac1, A

c
1, . . . , A

c
n−1, An|E)

P (Ac1, A
c
1, . . . , A

c
n−1|E)

= 1.

20. The Jack of Spades (with cider), Jack of Hearts (with tarts), Queen of Spades (with a
wink), and Queen of Hearts (without tarts) are taken from a deck of cards. These four
cards are shuffled, and then two are dealt.

(a) Find the probability that both of these two cards are queens, given that the first
card dealt is a queen.

(b) Find the probability that both are queens, given that at least one is a queen.

(c) Find the probability that both are queens, given that one is the Queen of Hearts.

Solution:

(a) Let Qi be the event that the ith card dealt is a queen, for i = 1, 2. Then P (Qi) = 1/2
since the ith card dealt is equally likely to be any of the cards. Also,

P (Q1, Q2) = P (Q1)P (Q2|Q1) =
1

2
· 1

3
=

1

6
.

As a check, note that by the naive definition of probability,

P (Q1, Q2) =
1(
4
2

) =
1

6
.

Thus,

P (Q1 ∩Q2|Q1) =
P (Q1 ∩Q2)

P (Q1)
=

1
6
1
2

=
1

3
.

(b) Continuing as in (a),

P (Q1∩Q2|Q1∪Q2) =
P (Q1 ∩Q2)

P (Q1 ∪Q2)
=

P (Q1 ∩Q2)

P (Q1) + P (Q2)− P (Q1 ∩Q2)
=

1
6

1
2

+ 1
2
− 1

6

=
1

5
.

Another way to see this is to note that there are 6 possible 2-card hands, all equally
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likely, of which 1 (the “double-jack pebble”) is eliminated by our conditioning; then by
definition of conditional probability, we are left with 5 “pebbles” of equal mass.

(c) Let Hi be the event that the ith card dealt is a heart, for i = 1, 2. Then

P (Q1 ∩Q2|(Q1 ∩H1) ∪ (Q2 ∩H2)) =
P (Q1 ∩H1 ∩Q2) + P (Q1 ∩Q2 ∩H2)

P (Q1 ∩H1) + P (Q2 ∩H2)

=
1
4
· 1

3
+ 1

4
· 1

3
1
4

+ 1
4

=
1

3
,

using the fact that Q1 ∩ H1 and Q2 ∩ H2 are disjoint. Alternatively, note that the
conditioning reduces the sample space down to 3 possibilities, which are equally likely,
and 1 of the 3 has both cards queens.

21. A fair coin is flipped 3 times. The toss results are recorded on separate slips of paper
(writing “H” if Heads and “T” if Tails), and the 3 slips of paper are thrown into a hat.

(a) Find the probability that all 3 tosses landed Heads, given that at least 2 were Heads.

(b) Two of the slips of paper are randomly drawn from the hat, and both show the
letter H. Given this information, what is the probability that all 3 tosses landed Heads?

Solution:

(a) Let A be the event that all 3 tosses landed Heads, and B be the event that at least
2 landed Heads. Then

P (A|B) =
P (A,B)

P (B)
=

P (A)

P (2 or 3 Heads)
=

1/8

4/8
=

1

4
.

(b) Let C be the event that the two randomly chosen slips of paper show Heads. Then

P (A|C) =
P (C|A)P (A)

P (C)

=
P (C|A)P (A)

P (C|A)P (A) + P (C|2 Heads)P (2 Heads) + P (C|1 or 0 Heads)P (1 or 0 Heads)

=
1
8

1
8

+ 1
3
· 3

8
+ 0 · 1

2

=
1

2
.

Alternatively, let Ai be the event that the ith toss was Heads. Note that

P (A|Ai, Aj) =
P (A)

P (Ai, Aj)
=

1/8

1/4
=

1

2

for any i 6= j. Since this probability is 1/2 regardless of which 2 slips of paper were
drawn, conditioning on which 2 slips were drawn gives

P (A|C) =
1

2
.

22. s© A bag contains one marble which is either green or blue, with equal probabilities. A
green marble is put in the bag (so there are 2 marbles now), and then a random marble
is taken out. The marble taken out is green. What is the probability that the remaining
marble is also green?

Solution: Let A be the event that the initial marble is green, B be the event that the
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removed marble is green, and C be the event that the remaining marble is green. We
need to find P (C|B). There are several ways to find this; one natural way is to condition
on whether the initial marble is green:

P (C|B) = P (C|B,A)P (A|B) + P (C|B,Ac)P (Ac|B) = 1P (A|B) + 0P (Ac|B).

To find P (A|B), use Bayes’ rule:

P (A|B) =
P (B|A)P (A)

P (B)
=

1/2

P (B|A)P (A) + P (B|Ac)P (Ac)
=

1/2

1/2 + 1/4
=

2

3
.

So P (C|B) = 2/3.

Historical note: This problem was first posed by Lewis Carroll in 1893.

23. s© Let G be the event that a certain individual is guilty of a certain robbery. In gathering
evidence, it is learned that an event E1 occurred, and a little later it is also learned that
another event E2 also occurred. Is it possible that individually, these pieces of evidence
increase the chance of guilt (so P (G|E1) > P (G) and P (G|E2) > P (G)), but together
they decrease the chance of guilt (so P (G|E1, E2) < P (G))?

Solution: Yes, this is possible. In fact, it is possible to have two events which separately
provide evidence in favor of G, yet which together preclude G! For example, suppose
that the crime was committed between 1 pm and 3 pm on a certain day. Let E1 be
the event that the suspect was at a specific nearby coffeeshop from 1 pm to 2 pm that
day, and let E2 be the event that the suspect was at the nearby coffeeshop from 2 pm
to 3 pm that day. Then P (G|E1) > P (G), P (G|E2) > P (G) (assuming that being in
the vicinity helps show that the suspect had the opportunity to commit the crime), yet
P (G|E1 ∩E2) < P (G) (as being in the coffeehouse from 1 pm to 3 pm gives the suspect
an alibi for the full time).

24. Is it possible to have events A1, A2, B,C with P (A1|B) > P (A1|C) and P (A2|B) >
P (A2|C), yet P (A1 ∪ A2|B) < P (A1 ∪ A2|C)? If so, find an example (with a “story”
interpreting the events, as well as giving specific numbers); otherwise, show that it is
impossible for this phenomenon to happen.

Solution: Yes, this is possible. First note that P (A1 ∪ A2|B) = P (A1|B) + P (A2|B) −
P (A1 ∩ A2|B), so it is not possible if A1 and A2 are disjoint, and that it is crucial to
consider the intersection. So let’s choose examples where P (A1 ∩ A2|B) is much larger
than P (A1 ∩A2|C), to offset the other inequalities.

Story 1 : Consider two basketball players, one of whom is randomly chosen to shoot two
free throws. The first player is very streaky, and always either makes both or misses both
free throws, with probability 0.8 of making both (this is an extreme example chosen for
simplicity, but we could also make it so the player has good days (on which there is a
high chance of making both shots) and bad days (on which there is a high chance of
missing both shots) without requiring always making both or missing both). The second
player’s free throws go in with probability 0.7, independently. Define the events as Aj :
the jth free throw goes in; B: the free throw shooter is the first player; C = Bc. Then

P (A1|B) = P (A2|B) = P (A1 ∩A2|B) = P (A1 ∪A2|B) = 0.8,

P (A1|C) = P (A2|C) = 0.7, P (A1 ∩A2|C) = 0.49, P (A1 ∪A2|C) = 2 · 0.7− 0.49 = 0.91.

Story 2 : Suppose that you can either take Good Class or Other Class, but not both. If
you take Good Class, you’ll attend lecture 70% of the time, and you will understand the
material if and only if you attend lecture. If you take Other Class, you’ll attend lecture
40% of the time and understand the material 40% of the time, but because the class is
so poorly taught, the only way you understand the material is by studying on your own
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and not attending lecture. Defining the events as A1: attend lecture; A2: understand
material; B: take Good Class; C: take Other Class,

P (A1|B) = P (A2|B) = P (A1 ∩A2|B) = P (A1 ∪A2|B) = 0.7,

P (A1|C) = P (A2|C) = 0.4, P (A1 ∩A2|C) = 0, P (A1 ∪A2|C) = 2 · 0.4 = 0.8.

25. s© A crime is committed by one of two suspects, A and B. Initially, there is equal
evidence against both of them. In further investigation at the crime scene, it is found
that the guilty party had a blood type found in 10% of the population. Suspect A does
match this blood type, whereas the blood type of Suspect B is unknown.

(a) Given this new information, what is the probability that A is the guilty party?

(b) Given this new information, what is the probability that B’s blood type matches
that found at the crime scene?

Solution:

(a) Let M be the event that A’s blood type matches the guilty party’s and for brevity,
write A for “A is guilty” and B for “B is guilty”. By Bayes’ rule,

P (A|M) =
P (M |A)P (A)

P (M |A)P (A) + P (M |B)P (B)
=

1/2

1/2 + (1/10)(1/2)
=

10

11
.

(We have P (M |B) = 1/10 since, given that B is guilty, the probability that A’s blood
type matches the guilty party’s is the same probability as for the general population.)

(b) Let C be the event that B’s blood type matches, and condition on whether B is
guilty. This gives

P (C|M) = P (C|M,A)P (A|M) + P (C|M,B)P (B|M) =
1

10
· 10

11
+

1

11
=

2

11
.

26. s© To battle against spam, Bob installs two anti-spam programs. An email arrives,
which is either legitimate (event L) or spam (event Lc), and which program j marks as
legitimate (event Mj) or marks as spam (event Mc

j ) for j ∈ {1, 2}. Assume that 10%
of Bob’s email is legitimate and that the two programs are each “90% accurate” in the
sense that P (Mj |L) = P (Mc

j |Lc) = 9/10. Also assume that given whether an email is
spam, the two programs’ outputs are conditionally independent.

(a) Find the probability that the email is legitimate, given that the 1st program marks
it as legitimate (simplify).

(b) Find the probability that the email is legitimate, given that both programs mark it
as legitimate (simplify).

(c) Bob runs the 1st program and M1 occurs. He updates his probabilities and then
runs the 2nd program. Let P̃ (A) = P (A|M1) be the updated probability function after
running the 1st program. Explain briefly in words whether or not P̃ (L|M2) = P (L|M1∩
M2): is conditioning on M1∩M2 in one step equivalent to first conditioning on M1, then
updating probabilities, and then conditioning on M2?

Solution:

(a) By Bayes’ rule,

P (L|M1) =
P (M1|L)P (L)

P (M1)
=

9
10
· 1

10
9
10
· 1

10
+ 1

10
· 9

10

=
1

2
.
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(b) By Bayes’ rule,

P (L|M1,M2) =
P (M1,M2|L)P (L)

P (M1,M2)
=

( 9
10

)2 · 1
10

( 9
10

)2 · 1
10

+ ( 1
10

)2 · 9
10

=
9

10
.

(c) Yes, they are the same, since Bayes’ rule is coherent. The probability of an event
given various pieces of evidence does not depend on the order in which the pieces of
evidence are incorporated into the updated probabilities.

27. Suppose that there are 5 blood types in the population, named type 1 through type 5,
with probabilities p1, p2, . . . , p5. A crime was committed by two individuals. A suspect,
who has blood type 1, has prior probability p of being guilty. At the crime scene blood
evidence is collected, which shows that one of the criminals has type 1 and the other
has type 2.

Find the posterior probability that the suspect is guilty, given the evidence. Does the
evidence make it more likely or less likely that the suspect is guilty, or does this depend
on the values of the parameters p, p1, . . . , p5? If it depends, give a simple criterion for
when the evidence makes it more likely that the suspect is guilty.

Solution: Let B be the event that the criminals have blood types 1 and 2 and G be the
event that the suspect is guilty, so P (G) = p. Then

P (G|B) =
P (B|G)P (G)

P (B|G)P (G) + P (B|Gc)P (Gc)
=

p2p

p2p+ 2p1p2(1− p) =
p

p+ 2p1(1− p) ,

since given G, event B occurs if and only if the other criminal has blood type 2, while
given Gc, the probability is p1p2 that the elder criminal and the younger criminal have
blood types 1 and 2 respectively, and also is p1p2 for the other way around.

Note that p2 canceled out and p3, p4, p5 are irrelevant. If p1 = 1/2, then P (G|B) =
P (G). If p1 < 1/2, then P (G|B) > P (G), which means that the evidence increases the
probability of guilt. But if p1 > 1/2, then P (G|B) < P (G), so the evidence decreases
the probability of guilt, even though the evidence includes finding blood at the scene of
the crime that matches the suspect’s blood type!

28. Fred has just tested positive for a certain disease.

(a) Given this information, find the posterior odds that he has the disease, in terms of
the prior odds, the sensitivity of the test, and the specificity of the test.

(b) Not surprisingly, Fred is much more interested in P (have disease|test positive),
known as the positive predictive value, than in the sensitivity P (test positive|have disease).
A handy rule of thumb in biostatistics and epidemiology is as follows:

For a rare disease and a reasonably good test, specificity matters much more than sen-
sitivity in determining the positive predictive value.

Explain intuitively why this rule of thumb works. For this part you can make up some
specific numbers and interpret probabilities in a frequentist way as proportions in a
large population, e.g., assume the disease afflicts 1% of a population of 10000 people
and then consider various possibilities for the sensitivity and specificity.

Solution:

(a) Let D be the event that Fred has the disease, and T be the event that he tests
positive. Let sens = P (T |D), spec = P (T c|Dc) be the sensitivity and specificity (re-
spectively). By the odds form of Bayes’ rule (or using Bayes’ rule in the numerator and
the denominator), the posterior odds of having the disease are

P (D|T )

P (Dc|T )
=

P (D)

P (Dc)

P (T |D)

P (T |Dc)
= (prior odds of D)

(
sens

1− spec

)
.
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(b) Let p be the prior probability of having the disease and q = 1− p. Let PPV be the
positive predictive value. By (a) or directly using Bayes’ rule, we have

PPV =
sens

sens + q
p
(1− spec)

.

For a concrete example to build intuition, let p = 0.01 and take sens = spec = 0.9 as
a baseline. Then PPV ≈ 0.083. In the calculations below, we describe what happens
if sensitivity is changed while specificity is held constant at 0.9 or vice versa. If we
can improve the sensitivity to 0.95, the PPV improves slightly, to 0.088. But if we can
improve the specificity to 0.95, the PPV improves to 0.15, a much bigger improvement.
If we can improve the sensitivity to 0.99, the PPV improves to 0.091, but the other way
around the PPV improves drastically more, to 0.48. Even in the extreme case that we
can make the sensitivity 1, the PPV only improves to 0.092. But in the extreme case
that we can make the specificity 1, the PPV becomes 1, the best value possible!

To further the intuitive picture, imagine a population of 10000 people, in which 1% (i.e.,
100 people) have the disease. Again take sens = spec = 0.9 as a baseline. On average,
there will be 90 true positives (correctly diagnosed diseased people), 10 false negatives
(misdiagnosed diseased people), 8910 true negatives (correctly diagnosed healthy peo-
ple), and 990 false positives (misdiagnosed healthy people). This is illustrated in the
figure below (not to scale).

10000 people

100

9900 people

dis
ea

se
d

healthy

90

10

test +

test -

990

8910 people

tes
t +

test -

true positives

false negatives

false positives

true negatives

The PPV corresponds to the number of true positives over the number of positives,
which is 90/(90+990) ≈ 0.083 in this example. Increasing specificity could dramatically
decrease the number of false positives, replacing 990 by a much lower number; on the
other hand, increasing sensitivity could at best increase the number of true positives
from 90 to 100 here.

29. A family has two children. Let C be a characteristic that a child can have, and assume
that each child has characteristic C with probability p, independently of each other and
of gender. For example, C could be the characteristic “born in winter” as in Example
2.2.7. Show that the probability that both children are girls given that at least one is a
girl with characteristic C is 2−p

4−p , which is 1/3 if p = 1 (agreeing with the first part of
Example 2.2.5) and approaches 1/2 from below as p→ 0 (agreeing with Example 2.2.7).

Solution: Let G be the event that both children are girls, A be the event that at least
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one child is a girl with characteristic C, and B be the event that at least one child has
characteristic C. Note that G ∩A = G ∩B, and G is independent of B. Then

P (G|A) =
P (G,A)

P (A)

=
P (G,B)

P (A)

=
P (G)P (B)

P (A)

=
1
4
(1− (1− p)2)

1− (1− p
2
)2

=
1− (1− 2p+ p2)

4− (4− 4p+ p2)

=
2− p
4− p .

This is 1/3 if p = 1 and approaches 1/2 as p→ 0, but is less than 1/2 for all p > 0 since
2−p
4−p <

1
2

is equivalent to 4− 2p < 4− p, which in turn is equivalent to p > 0.

Independence and conditional independence

30. s© A family has 3 children, creatively named A,B, and C.

(a) Discuss intuitively (but clearly) whether the event “A is older than B” is independent
of the event “A is older than C”.

(b) Find the probability that A is older than B, given that A is older than C.

Solution:

(a) They are not independent: knowing that A is older than B makes it more likely that
A is older than C, as if A is older than B, then the only way that A can be younger
than C is if the birth order is CAB, whereas the birth orders ABC and ACB are both
compatible with A being older than B. To make this more intuitive, think of an extreme
case where there are 100 children instead of 3, call them A1, . . . , A100. Given that A1

is older than all of A2, A3, . . . , A99, it’s clear that A1 is very old (relatively), whereas
there isn’t evidence about where A100 fits into the birth order.

(b) Writing x > y to mean that x is older than y,

P (A > B|A > C) =
P (A > B,A > C)

P (A > C)
=

1/3

1/2
=

2

3

since P (A > B,A > C) = P (A is the eldest child) = 1/3 (unconditionally, any of the 3
children is equally likely to be the eldest).

31. s© Is it possible that an event is independent of itself? If so, when is this the case?

Solution: LetA be an event. IfA is independent of itself, then P (A) = P (A∩A) = P (A)2,
so P (A) is 0 or 1. So this is only possible in the extreme cases that the event has
probability 0 or 1.

32. s© Consider four nonstandard dice (the Efron dice), whose sides are labeled as follows
(the 6 sides on each die are equally likely).

A: 4, 4, 4, 4, 0, 0

B: 3, 3, 3, 3, 3, 3
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C: 6, 6, 2, 2, 2, 2

D: 5, 5, 5, 1, 1, 1

These four dice are each rolled once. Let A be the result for die A, B be the result for
die B, etc.

(a) Find P (A > B), P (B > C), P (C > D), and P (D > A).

(b) Is the event A > B independent of the event B > C? Is the event B > C independent
of the event C > D? Explain.

Solution:

(a) We have
P (A > B) = P (A = 4) = 2/3.

P (B > C) = P (C = 2) = 2/3.

P (C > D) = P (C = 6) + P (C = 2, D = 1) = 2/3.

P (D > A) = P (D = 5) + P (D = 1, A = 0) = 2/3.

(b) The event A > B is independent of the event B > C since A > B is the same
thing as A = 4, knowledge of which gives no information about B > C (which is the
same thing as C = 2). On the other hand, B > C is not independent of C > D since
P (C > D|C = 2) = 1/2 6= 1 = P (C > D|C 6= 2).

33. Alice, Bob, and 100 other people live in a small town. Let C be the set consisting of the
100 other people, let A be the set of people in C who are friends with Alice, and let B
be the set of people in C who are friends with Bob. Suppose that for each person in C,
Alice is friends with that person with probability 1/2, and likewise for Bob, with all of
these friendship statuses independent.

(a) Let D ⊆ C. Find P (A = D).

(b) Find P (A ⊆ B).

(c) Find P (A ∪B = C).

Solution:

(a) More generally, let p be the probability of Alice being friends with any specific person
in C (without assuming p = 1/2), and let k = |D| (the size of D). Then

P (A = D) = pk(1− p)100−k,

by independence. For the case p = 1/2, this reduces to

P (A = D) = 1/2100 ≈ 7.89× 10−31.

That is, A is equally likely to be any subset of C.

(b) The event A ⊆ B says that for each person in C, it is not the case that they are
friends with Alice but not with Bob. The event “friends with Alice but not Bob” has
a probability of 1/4 for each person in C, so by independence the overall probability is
(3/4)100 ≈ 3.21× 10−13.

(c) The event A∪B = C says that everyone in C is friends with Alice or Bob (inclusive
of the possibility of being friends with both). For each person in C, there is a 3/4
chance that they are friends with Alice or Bob, so by independence there is a (3/4)100 ≈
3.21× 10−13 chance that everyone in C is friends with Alice or Bob.



Conditional probability 45

34. Suppose that there are two types of drivers: good drivers and bad drivers. Let G be
the event that a certain man is a good driver, A be the event that he gets into a car
accident next year, and B be the event that he gets into a car accident the following
year. Let P (G) = g and P (A|G) = P (B|G) = p1, P (A|Gc) = P (B|Gc) = p2, with
p1 < p2. Suppose that given the information of whether or not the man is a good driver,
A and B are independent (for simplicity and to avoid being morbid, assume that the
accidents being considered are minor and wouldn’t make the man unable to drive).

(a) Explain intuitively whether or not A and B are independent.

(b) Find P (G|Ac).

(c) Find P (B|Ac).

Solution:

(a) Intuitively, A and B are not independent, since learning that the man has a car
accident next year makes it more likely that he is a bad driver, which in turn makes it
more likely that he will have another accident the following year. We have that A and
B are conditionally independent given G (and conditionally independent given Gc), but
they are not independent since A gives information about whether the man is a good
driver, and this information is very relevant for assessing how likely B is.

(b) By Bayes’s rule and LOTP,

P (G|Ac) =
P (Ac|G)P (G)

P (Ac)
=

(1− p1)g

(1− p1)g + (1− p2)(1− g)
.

(c) Condition on whether or not the man is a good driver, using LOTP with extra
conditioning:

P (B|Ac) = P (B|Ac, G)P (G|Ac) + P (B|Ac, Gc)P (Gc|Ac)
= P (B|G)P (G|Ac) + P (B|Gc)P (Gc|Ac)
= p1P (G|Ac) + p2(1− P (G|Ac))

=
p1(1− p1)g + p2(1− p2)(1− g)

(1− p1)g + (1− p2)(1− g)
.

35. s© You are going to play 2 games of chess with an opponent whom you have never
played against before (for the sake of this problem). Your opponent is equally likely to
be a beginner, intermediate, or a master. Depending on which, your chances of winning
an individual game are 90%, 50%, or 30%, respectively.

(a) What is your probability of winning the first game?

(b) Congratulations: you won the first game! Given this information, what is the prob-
ability that you will also win the second game (assume that, given the skill level of your
opponent, the outcomes of the games are independent)?

(c) Explain the distinction between assuming that the outcomes of the games are in-
dependent and assuming that they are conditionally independent given the opponent’s
skill level. Which of these assumptions seems more reasonable, and why?

Solution:

(a) Let Wi be the event of winning the ith game. By the law of total probability,

P (W1) = (0.9 + 0.5 + 0.3)/3 = 17/30.
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(b) We have P (W2|W1) = P (W2,W1)/P (W1). The denominator is known from (a),
while the numerator can be found by conditioning on the skill level of the opponent:

P (W1,W2) =
1

3
P (W1,W2|beginner)+

1

3
P (W1,W2|intermediate)+

1

3
P (W1,W2|expert).

Since W1 and W2 are conditionally independent given the skill level of the opponent,
this becomes

P (W1,W2) = (0.92 + 0.52 + 0.32)/3 = 23/60.

So

P (W2|W1) =
23/60

17/30
= 23/34.

(c) Independence here means that knowing one game’s outcome gives no information
about the other game’s outcome, while conditional independence is the same statement
where all probabilities are conditional on the opponent’s skill level. Conditional inde-
pendence given the opponent’s skill level is a more reasonable assumption here. This is
because winning the first game gives information about the opponent’s skill level, which
in turn gives information about the result of the second game.

That is, if the opponent’s skill level is treated as fixed and known, then it may be
reasonable to assume independence of games given this information; with the opponent’s
skill level random, earlier games can be used to help infer the opponent’s skill level, which
affects the probabilities for future games.

36. (a) Suppose that in the population of college applicants, being good at baseball is
independent of having a good math score on a certain standardized test (with respect
to some measure of “good”). A certain college has a simple admissions procedure: admit
an applicant if and only if the applicant is good at baseball or has a good math score
on the test.

Give an intuitive explanation of why it makes sense that among students that the college
admits, having a good math score is negatively associated with being good at baseball,
i.e., conditioning on having a good math score decreases the chance of being good at
baseball.

(b) Show that if A and B are independent and C = A∪B, then A and B are conditionally
dependent given C (as long as P (A ∩B) > 0 and P (A ∪B) < 1), with

P (A|B,C) < P (A|C).

This phenomenon is known as Berkson’s paradox, especially in the context of admissions
to a school, hospital, etc.

Solution:

(a) Even though baseball skill and the math score are independent in the general pop-
ulation of applicants, it makes sense that they will become dependent (with a negative
association) when restricting only to the students who are admitted. This is because
within this sub-population, having a bad math score implies being good at baseball (else
the student would not have been admitted). So having a good math score decreases the
chance of being good in baseball (as shown in Exercise 16, if an event B is evidence in
favor of an event A, then Bc is evidence against A).

As another explanation, note that 3 types of students are admitted: (i) good math score,
good at baseball; (ii) good math score, bad at baseball; (iii) bad math score, good at
baseball. Conditioning on having good math score removes students of type (iii) from
consideration, which decreases the proportion of students who are good at baseball.

(b) Assume that A,B,C are as described. Then

P (A|B ∩ C) = P (A|B) = P (A),
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since A and B are independent and B ∩ C = B. In contrast,

P (A|C) =
P (A ∩ C)

P (C)
=
P (A)

P (C)
> P (A),

since 0 < P (C) < 1. Therefore, P (A|B,C) = P (A) < P (A|C).

37. We want to design a spam filter for email. As described in Exercise 1, a major strategy
is to find phrases that are much more likely to appear in a spam email than in a non-
spam email. In that exercise, we only consider one such phrase: “free money”. More
realistically, suppose that we have created a list of 100 words or phrases that are much
more likely to be used in spam than in non-spam.

Let Wj be the event that an email contains the jth word or phrase on the list. Let

p = P (spam), pj = P (Wj |spam), rj = P (Wj |not spam),

where “spam” is shorthand for the event that the email is spam.

Assume that W1, . . . ,W100 are conditionally independent given that the email is spam,
and conditionally independent given that it is not spam. A method for classifying emails
(or other objects) based on this kind of assumption is called a naive Bayes classifier.
(Here “naive” refers to the fact that the conditional independence is a strong assumption,
not to Bayes being naive. The assumption may or may not be realistic, but naive Bayes
classifiers sometimes work well in practice even if the assumption is not realistic.)

Under this assumption we know, for example, that

P (W1,W2,W
c
3 ,W

c
4 , . . . ,W

c
100|spam) = p1p2(1− p3)(1− p4) . . . (1− p100).

Without the naive Bayes assumption, there would be vastly more statistical and com-
putational difficulties since we would need to consider 2100 ≈ 1.3 × 1030 events of the
form A1 ∩ A2 · · · ∩ A100 with each Aj equal to either Wj or W c

j . A new email has just
arrived, and it includes the 23rd, 64th, and 65th words or phrases on the list (but not
the other 97). So we want to compute

P (spam|W c
1 , . . . ,W

c
22,W23,W

c
24, . . . ,W

c
63,W64,W65,W

c
66, . . . ,W

c
100).

Note that we need to condition on all the evidence, not just the fact that W23∩W64∩W65

occurred. Find the conditional probability that the new email is spam (in terms of p
and the pj and rj).

Solution:

Let

E = W c
1 ∩ · · · ∩W c

22 ∩W23 ∩W c
24 ∩ · · · ∩W c

63 ∩W64 ∩W65 ∩W c
66 ∩ · · · ∩W c

100

be the observed evidence. By Bayes’ rule, LOTP, and conditional independence,

P (spam|E) =
P (E|spam)P (spam)

P (E|spam)P (spam) + P (E|non-spam)P (non-spam)

=
ap

ap+ b(1− p) ,

where

a = (1− p1) . . . (1− p22)p23(1− p24) . . . (1− p63)p64p65(1− p66) . . . (1− p100),

b = (1− r1) . . . (1− r22)r23(1− r24) . . . (1− r63)r64r65(1− r66) . . . (1− r100).
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Monty Hall

38. s© (a) Consider the following 7-door version of the Monty Hall problem. There are 7
doors, behind one of which there is a car (which you want), and behind the rest of which
there are goats (which you don’t want). Initially, all possibilities are equally likely for
where the car is. You choose a door. Monty Hall then opens 3 goat doors, and offers
you the option of switching to any of the remaining 3 doors.

Assume that Monty Hall knows which door has the car, will always open 3 goat doors
and offer the option of switching, and that Monty chooses with equal probabilities from
all his choices of which goat doors to open. Should you switch? What is your probability
of success if you switch to one of the remaining 3 doors?

(b) Generalize the above to a Monty Hall problem where there are n ≥ 3 doors, of which
Monty opens m goat doors, with 1 ≤ m ≤ n− 2.

Solution:

(a) Assume the doors are labeled such that you choose door 1 (to simplify notation),
and suppose first that you follow the “stick to your original choice” strategy. Let S be
the event of success in getting the car, and let Cj be the event that the car is behind
door j. Conditioning on which door has the car, we have

P (S) = P (S|C1)P (C1) + · · ·+ P (S|C7)P (C7) = P (C1) =
1

7
.

Let Mijk be the event that Monty opens doors i, j, k. Then

P (S) =
∑
i,j,k

P (S|Mijk)P (Mijk)

(summed over all i, j, k with 2 ≤ i < j < k ≤ 7.) By symmetry, this gives

P (S|Mijk) = P (S) =
1

7

for all i, j, k with 2 ≤ i < j < k ≤ 7. Thus, the conditional probability that the car is
behind 1 of the remaining 3 doors is 6/7, which gives 2/7 for each. So you should switch,
thus making your probability of success 2/7 rather than 1/7.

(b) By the same reasoning, the probability of success for “stick to your original choice”
is 1

n
, both unconditionally and conditionally. Each of the n − m − 1 remaining doors

has conditional probability n−1
(n−m−1)n

of having the car. This value is greater than 1
n

, so

you should switch, thus obtaining probability n−1
(n−m−1)n

of success (both conditionally

and unconditionally).

39. s© Consider the Monty Hall problem, except that Monty enjoys opening door 2 more
than he enjoys opening door 3, and if he has a choice between opening these two doors,
he opens door 2 with probability p, where 1

2
≤ p ≤ 1.

To recap: there are three doors, behind one of which there is a car (which you want),
and behind the other two of which there are goats (which you don’t want). Initially,
all possibilities are equally likely for where the car is. You choose a door, which for
concreteness we assume is door 1. Monty Hall then opens a door to reveal a goat, and
offers you the option of switching. Assume that Monty Hall knows which door has the
car, will always open a goat door and offer the option of switching, and as above assume
that if Monty Hall has a choice between opening door 2 and door 3, he chooses door 2
with probability p (with 1

2
≤ p ≤ 1).

(a) Find the unconditional probability that the strategy of always switching succeeds
(unconditional in the sense that we do not condition on which of doors 2 or 3 Monty
opens).
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(b) Find the probability that the strategy of always switching succeeds, given that Monty
opens door 2.

(c) Find the probability that the strategy of always switching succeeds, given that Monty
opens door 3.

Solution:

(a) Let Cj be the event that the car is hidden behind door j and let W be the event
that we win using the switching strategy. Using the law of total probability, we can find
the unconditional probability of winning:

P (W ) = P (W |C1)P (C1) + P (W |C2)P (C2) + P (W |C3)P (C3)

= 0 · 1/3 + 1 · 1/3 + 1 · 1/3 = 2/3.

(b) A tree method works well here (delete the paths which are no longer relevant after
the conditioning, and reweight the remaining values by dividing by their sum), or we
can use Bayes’ rule and the law of total probability (as below).

Let Di be the event that Monty opens Door i. Note that we are looking for P (W |D2),
which is the same as P (C3|D2) as we first choose Door 1 and then switch to Door 3. By
Bayes’ rule and the law of total probability,

P (C3|D2) =
P (D2|C3)P (C3)

P (D2)

=
P (D2|C3)P (C3)

P (D2|C1)P (C1) + P (D2|C2)P (C2) + P (D2|C3)P (C3)

=
1 · 1/3

p · 1/3 + 0 · 1/3 + 1 · 1/3

=
1

1 + p
.

(c) The structure of the problem is the same as Part (b) (except for the condition that
p ≥ 1/2, which was not needed above). Imagine repainting doors 2 and 3, reversing
which is called which. By Part (b) with 1− p in place of p, P (C2|D3) = 1

1+(1−p) = 1
2−p .

40. The ratings of Monty Hall’s show have dropped slightly, and a panicking executive
producer complains to Monty that the part of the show where he opens a door lacks
suspense: Monty always opens a door with a goat. Monty replies that the reason is so
that the game is never spoiled by him revealing the car, but he agrees to update the
game as follows.

Before each show, Monty secretly flips a coin with probability p of Heads. If the coin
lands Heads, Monty resolves to open a goat door (with equal probabilities if there is
a choice). Otherwise, Monty resolves to open a random unopened door, with equal
probabilities. The contestant knows p but does not know the outcome of the coin flip.
When the show starts, the contestant chooses a door. Monty (who knows where the
car is) then opens a door. If the car is revealed, the game is over; if a goat is revealed,
the contestant is offered the option of switching. Now suppose it turns out that the
contestant opens door 1 and then Monty opens door 2, revealing a goat. What is the
contestant’s probability of success if he or she switches to door 3?

Solution: For j = 1, 2, 3, let Cj be the event that the car is behind door j, Gj = Ccj ,
and Mj be the event that Monty opens door j. Let R be the event that Monty is in
“random mode” (i.e., the coin lands Tails). By the law of total probability,

P (C3|M2, G2) = P (R|M2, G2)P (C3|M2, G2, R) + P (Rc|M2, G2)P (C3|M2, G2, R
c),
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where P (C3|M2, G2, R
c) = 2/3 (since given Rc, Monty is operating as in the usual

Monty Hall problem) and

P (C3|M2, G2, R) =
P (M2, G2|C3, R)P (C3|R)

P (M2, G2|R)
=

1
2
· 1

3
1
2
· 2

3

=
1

2
.

For the denominator above, note that M2 and G2 are conditionally independent given
R; for the numerator, note also that P (M2, G2|C3, R) = P (M2|C3, R) = P (M2|R). The
posterior probability that Monty is in random mode is

P (R|M2, G2) =
P (M2, G2|R)P (R)

P (M2, G2|R)P (R) + P (M2, G2|Rc)P (Rc)
=

1
2
· 2

3
(1− p)

1
2
· 2

3
(1− p) + 1

2
p

=
2(1− p)

2 + p
,

again since M2 and G2 are conditionally independent given R, and since given Rc, M2

implies G2. Putting these results together, we have

P (C3|M2, G2) =
1

2

(
2(1− p)

2 + p

)
+

2

3

(
1− 2(1− p)

2 + p

)
=

1 + p

2 + p
.

41. You are the contestant on the Monty Hall show. Monty is trying out a new version of
his game, with rules as follows. You get to choose one of three doors. One door has a car
behind it, another has a computer, and the other door has a goat (with all permutations
equally likely). Monty, who knows which prize is behind each door, will open a door (but
not the one you chose) and then let you choose whether to switch from your current
choice to the other unopened door.

Assume that you prefer the car to the computer, the computer to the goat, and (by
transitivity) the car to the goat.

(a) Suppose for this part only that Monty always opens the door that reveals your less
preferred prize out of the two alternatives, e.g., if he is faced with the choice between
revealing the goat or the computer, he will reveal the goat. Monty opens a door, revealing
a goat (this is again for this part only). Given this information, should you switch? If
you do switch, what is your probability of success in getting the car?

(b) Now suppose that Monty reveals your less preferred prize with probability p, and
your more preferred prize with probability q = 1 − p. Monty opens a door, revealing a
computer. Given this information, should you switch (your answer can depend on p)?
If you do switch, what is your probability of success in getting the car (in terms of p)?

Solution:

(a) Let C be the event that the car is behind the door you originally chosen, and let
Mgoat be the event that Monty reveals a goat when he opens a door. By Bayes’ rule,

P (C|Mgoat) =
P (Mgoat|C)P (C)

P (Mgoat)
=

(1)(1/3)

2/3
= 1/2,

where the denominator comes from the fact that the two doors other than your initial
choice are equally likely to have {car, computer}, {computer, goat}, or {car, goat}, and
only in the first of these cases will Monty not reveal a goat.

So you should be indifferent between switching and not switching; either way, your
conditional probability of getting the car is 1/2. (Note though that the unconditional
probability that switching would get you the car, before Monty revealed the goat, is 2/3
since you will succeed by switching if and only if your initial door does not have the
car.)

(b) Let C,R,G be the events that the car is behind the door you originally chosen is
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a car, computer, goat, respectively, and let Mcomp be the event that Monty reveals a
computer when he opens a door. By Bayes’ rule and LOTP,

P (C|Mcomp) =
P (Mcomp|C)P (C)

P (Mcomp)
=

P (Mcomp|C)P (C)

P (Mcomp|C)P (C) + P (Mcomp|R)P (R) + P (Mcomp|G)P (G)
.

We have P (Mcomp|C) = q, P (Mcomp|R) = 0, P (Mcomp|G) = p, so

P (C|Mcomp) =
q/3

q/3 + 0 + p/3
= q.

Thus, your conditional probability of success if you follow the switching strategy is p. For
p < 1/2, you should not switch, for p = 1/2, you should be indifferent about switching,
and for p > 1/2, you should switch.

First-step analysis and gambler’s ruin

42. s© A fair die is rolled repeatedly, and a running total is kept (which is, at each time,
the total of all the rolls up until that time). Let pn be the probability that the running
total is ever exactly n (assume the die will always be rolled enough times so that the
running total will eventually exceed n, but it may or may not ever equal n).

(a) Write down a recursive equation for pn (relating pn to earlier terms pk in a simple
way). Your equation should be true for all positive integers n, so give a definition of p0

and pk for k < 0 so that the recursive equation is true for small values of n.

(b) Find p7.

(c) Give an intuitive explanation for the fact that pn → 1/3.5 = 2/7 as n→∞.

Solution:

(a) We will find something to condition on to reduce the case of interest to earlier,
simpler cases. This is achieved by the useful strategy of first step anaysis. Let pn be the
probability that the running total is ever exactly n. Note that if, for example, the first
throw is a 3, then the probability of reaching n exactly is pn−3 since starting from that
point, we need to get a total of n− 3 exactly. So

pn =
1

6
(pn−1 + pn−2 + pn−3 + pn−4 + pn−5 + pn−6),

where we define p0 = 1 (which makes sense anyway since the running total is 0 before
the first toss) and pk = 0 for k < 0.

(b) Using the recursive equation in (a), we have

p1 =
1

6
, p2 =

1

6
(1 +

1

6
), p3 =

1

6
(1 +

1

6
)2,

p4 =
1

6
(1 +

1

6
)3, p5 =

1

6
(1 +

1

6
)4, p6 =

1

6
(1 +

1

6
)5.

Hence,

p7 =
1

6
(p1 + p2 + p3 + p4 + p5 + p6) =

1

6

(
(1 +

1

6
)6 − 1

)
≈ 0.2536.

(c) An intuitive explanation is as follows. The average number thrown by the die is
(total of dots)/6, which is 21/6 = 7/2, so that every throw adds on an average of 7/2.
We can therefore expect to land on 2 out of every 7 numbers, and the probability of
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landing on any particular number is 2/7. A mathematical derivation (which was not
requested in the problem) can be given as follows:

pn+1 + 2pn+2 + 3pn+3 + 4pn+4 + 5pn+5 + 6pn+6

=pn+1 + 2pn+2 + 3pn+3 + 4pn+4 + 5pn+5

+ pn + pn+1 + pn+2 + pn+3 + pn+4 + pn+5

=pn + 2pn+1 + 3pn+2 + 4pn+3 + 5pn+4 + 6pn+5

= · · ·
=p−5 + 2p−4 + 3p−3 + 4p−2 + 5p−1 + 6p0 = 6.

Taking the limit of the lefthand side as n goes to ∞, we have

(1 + 2 + 3 + 4 + 5 + 6) lim
n→∞

pn = 6,

so limn→∞ pn = 2/7.

43. A sequence of n ≥ 1 independent trials is performed, where each trial ends in “success”
or “failure” (but not both). Let pi be the probability of success in the ith trial, qi = 1−pi,
and bi = qi − 1/2, for i = 1, 2, . . . , n. Let An be the event that the number of successful
trials is even.

(a) Show that for n = 2, P (A2) = 1/2 + 2b1b2.

(b) Show by induction that

P (An) = 1/2 + 2n−1b1b2 . . . bn.

(This result is very useful in cryptography. Also, note that it implies that if n coins are
flipped, then the probability of an even number of Heads is 1/2 if and only if at least
one of the coins is fair.) Hint: Group some trials into a supertrial.

(c) Check directly that the result of (b) is true in the following simple cases: pi = 1/2
for some i; pi = 0 for all i; pi = 1 for all i.

Solution:

(a) We have

P (A2) = p1p2 + q1q2 = (
1

2
− b1)(

1

2
− b2) + (

1

2
+ b1)(

1

2
+ b2) =

1

2
+ 2b1b2.

(b) For n = 1, P (A1) = P (1st trial is a failure) = q1 = 1/2 + b1. For n = 2, the result
was shown in (a). Now assume the result is true for n, and prove it for n + 1, where
n ≥ 2 is fixed. Think of the first n trials as 1 supertrial, where “success” is defined as
the number of successes being odd. By assumption, the probability of failure for the
supertrial is q̃1 = 1

2
+ 2n−1b1 . . . bn. Let b̃1 = q̃1 − 1

2
. Then by (a),

P (An+1) =
1

2
+ 2b̃1bn+1 =

1

2
+ 2nb1b2 . . . bnbn+1,

which completes the induction. This result, called the piling-up lemma, is used in cryp-
tography to compute or bound probabilities needed for some widely-used ciphers.

(c) Let pi = 1/2 for some fixed i. Then bi = 0 and we need to check directly that
P (An) = 1/2. Let p be the probability that the number of successes in the n− 1 trials
other than the ith is odd. Conditioning on the result of the ith trial, we have

P (An) = p · 1

2
+ (1− p) · 1

2
=

1

2
.

For the case that pi = 0 for all i, the event An is guaranteed to occur (since there will
be 0 successes), which agrees with P (An) = 1/2 + 2n−1 · 2−n = 1. For the case that
pi = 1 for all i, there will be n successes, so An occurs if and only if n is even. This
agrees with (b), which simplifies in this case to P (An) = (1 + (−1)n)/2.
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44. s© Calvin and Hobbes play a match consisting of a series of games, where Calvin has
probability p of winning each game (independently). They play with a “win by two””
rule: the first player to win two games more than his opponent wins the match. Find
the probability that Calvin wins the match (in terms of p), in two different ways:

(a) by conditioning, using the law of total probability.

(b) by interpreting the problem as a gambler’s ruin problem.

Solution:

(a) Let C be the event that Calvin wins the match, X ∼ Bin(2, p) be how many of the
first 2 games he wins, and q = 1− p. Then

P (C) = P (C|X = 0)q2 + P (C|X = 1)(2pq) + P (C|X = 2)p2 = 2pqP (C) + p2,

so P (C) = p2

1−2pq
. This can also be written as p2

p2+q2
, since p+ q = 1.

Sanity check : Note that this should (and does) reduce to 1 for p = 1, 0 for p = 0, and
1
2

for p = 1
2
. Also, it makes sense that the probability of Hobbes winning, which is

1− P (C) = q2

p2+q2
, can also be obtained by swapping p and q.

(b) The problem can be thought of as a gambler’s ruin where each player starts out
with $2. So the probability that Calvin wins the match is

1− (q/p)2

1− (q/p)4
=

(p2 − q2)/p2

(p4 − q4)/p4
=

(p2 − q2)/p2

(p2 − q2)(p2 + q2)/p4
=

p2

p2 + q2
,

which agrees with the above.

45. A gambler repeatedly plays a game where in each round, he wins a dollar with probability
1/3 and loses a dollar with probability 2/3. His strategy is “quit when he is ahead by
$2”, though some suspect he is a gambling addict anyway. Suppose that he starts with
a million dollars. Show that the probability that he’ll ever be ahead by $2 is less than
1/4.

Solution: This is a special case of the gambler’s ruin problem. Let A1 be the event that
he is successful on the first play and let W be the event that he is ever ahead by $2
before being ruined. Then by the law of total probability, we have

P (W ) = P (W |A1)P (A1) + P (W |Ac1)P (Ac1).

Let ai be the probability that the gambler achieves a profit of $2 before being ru-
ined, starting with a fortune of $i. For our setup, P (W ) = ai, P (W |A1) = ai+1 and
P (W |Ac1) = ai−1. Therefore,

ai = ai+1/3 + 2ai−1/3,

with boundary conditions a0 = 0 and ai+2 = 1. We can then solve this difference
equation for ai (directly or using the result of the gambler’s ruin problem):

ai =
2i − 1

22+i − 1
.

This is always less than 1/4 since 2i−1
22+i−1

< 1
4

is equivalent to 4(2i−1) < 22+i−1, which

is equivalent to the true statement 22+i − 4 < 22+i − 1.
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46. As in the gambler’s ruin problem, two gamblers, A and B, make a series of bets, until
one of the gamblers goes bankrupt. Let A start out with i dollars and B start out with
N − i dollars, and let p be the probability of A winning a bet, with 0 < p < 1

2
. Each

bet is for 1
k

dollars, with k a positive integer, e.g., k = 1 is the original gambler’s ruin
problem and k = 20 means they’re betting nickels. Find the probability that A wins the
game, and determine what happens to this as k →∞.

Solution: Define 1 kidollar to be 1
k

dollars. This problem is exactly the gambler’s ruin
problem if everything is written in terms of kidollars as the unit of currency, e.g., for
k = 20 it’s just the gambler’s ruin problem, with nickels instead of dollars. Note that A
starts out with ki kidollars and B starts out with k(N − i) kidollars. Let r = (1− p)/p.
By the gambler’s ruin problem, the probability that A wins the game is

P (A wins) =
1− rki

1− rkN .

This is 0 if i = 0 and 1 if i = N . For 1 ≤ i ≤ N − 1, since r > 1 we have

lim
k→∞

1− rki

1− rkN = lim
k→∞

rki

rkN
= lim
k→∞

rk(i−N) = 0.

47. There are 100 equally spaced points around a circle. At 99 of the points, there are
sheep, and at 1 point, there is a wolf. At each time step, the wolf randomly moves either
clockwise or counterclockwise by 1 point. If there is a sheep at that point, he eats it.
The sheep don’t move. What is the probability that the sheep who is initially opposite
the wolf is the last one remaining?

Solution: Call the sheep initially opposite the wolf Dolly. If Dolly is the last sheep
surviving, then both of Dolly’s neighbors get eaten before Dolly. But the converse is
also true: if both of Dolly’s neighbors get eaten before Dolly, then the wolf must have
gone all the way around the long way after eating the first neighbor to get to the other
neighbor.

Now consider the moment just after the wolf has eaten the first of Dolly’s neighbors.
The question then becomes whether the wolf will reach Dolly first or the other neighbor
first. This is the same as the gambler’s ruin problem, viewed as a random walk started
at 1 and ending when it reaches either 0 or 99 (reaching 0 corresponds to eating Dolly).
Thus, the probability that Dolly is the last sheep surviving is 1/99. (Similarly, it can be
shown that the sheep are all equally likely to be the last sheep surviving!)

48. An immortal drunk man wanders around randomly on the integers. He starts at the
origin, and at each step he moves 1 unit to the right or 1 unit to the left, with probabilities
p and q = 1−p respectively, independently of all his previous steps. Let Sn be his position
after n steps.

(a) Let pk be the probability that the drunk ever reaches the value k, for all k ≥ 0.
Write down a difference equation for pk (you do not need to solve it for this part).

(b) Find pk, fully simplified; be sure to consider all 3 cases: p < 1/2, p = 1/2, and
p > 1/2. Feel free to assume that if A1, A2, . . . are events with Aj ⊆ Aj+1 for all j,
then P (An)→ P (∪∞j=1Aj) as n→∞ (because it is true; this is known as continuity of
probability).

Solution:

(a) Conditioning on the first step,

pk = ppk−1 + qpk+1

for all k ≥ 1, with p0 = 1.



Conditional probability 55

(b) For fixed k and any positive integer j, let Aj be the event that the drunk reaches k
before ever reaching −j. Then Aj ⊆ Aj+1 for all m since the drunk would have to walk
past −j to reach −j − 1. Also, ∪∞j=1Aj is the event that the drunk ever reaches k, since
if he reaches −j before k for all j, then he will never have time to get to k. Now we
just need to find limj→∞ P (Aj), where we already know P (Aj) from the result of the
gambler’s ruin problem!

For p = 1/2,

P (Aj) =
j

j + k
→ 1 as j →∞.

For p > 1/2,

P (Aj) =
1− ( q

p
)j

1− ( q
p
)j+k

→ 1 as j →∞,

since (q/p)j → 0. For p < 1/2,

P (Aj) =
1− ( q

p
)j

1− ( q
p
)j+k

→
(
p

q

)k
as j →∞,

since (q/p)j → ∞ so the 1’s in the numerator and denominator become negligible as
j →∞.

Simpson’s paradox

49. s© (a) Is it possible to have events A,B,C such that P (A|C) < P (B|C) and P (A|Cc) <
P (B|Cc), yet P (A) > P (B)? That is, A is less likely than B given that C is true,
and also less likely than B given that C is false, yet A is more likely than B if we’re
given no information about C. Show this is impossible (with a short proof) or find a
counterexample (with a story interpreting A,B,C).

(b) If the scenario in (a) is possible, is it a special case of Simpson’s paradox, equivalent to
Simpson’s paradox, or neither? If it is impossible, explain intuitively why it is impossible
even though Simpson’s paradox is possible.

Solution:

(a) It is not possible, as seen using the law of total probability:

P (A) = P (A|C)P (C) + P (A|Cc)P (Cc) < P (B|C)P (C) + P (B|Cc)P (Cc) = P (B).

(b) In Simpson’s paradox, using the notation from the chapter, we can expand out
P (A|B) and P (A|Bc) using LOTP to condition on C, but the inequality can flip because
of the weights such as P (C|B) on the terms (e.g., Dr. Nick performs a lot more Band-
Aid removals than Dr. Hibbert). In this problem, the weights P (C) and P (Cc) are the
same in both expansions, so the inequality is preserved.

50. s© Consider the following conversation from an episode of The Simpsons:

Lisa: Dad, I think he’s an ivory dealer! His boots are ivory, his hat is
ivory, and I’m pretty sure that check is ivory.

Homer: Lisa, a guy who has lots of ivory is less likely to hurt Stampy
than a guy whose ivory supplies are low.

Here Homer and Lisa are debating the question of whether or not the man (named
Blackheart) is likely to hurt Stampy the Elephant if they sell Stampy to him. They
clearly disagree about how to use their observations about Blackheart to learn about
the probability (conditional on the evidence) that Blackheart will hurt Stampy.

(a) Define clear notation for the various events of interest here.
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(b) Express Lisa’s and Homer’s arguments (Lisa’s is partly implicit) as conditional
probability statements in terms of your notation from (a).

(c) Assume it is true that someone who has a lot of a commodity will have less desire
to acquire more of the commodity. Explain what is wrong with Homer’s reasoning that
the evidence about Blackheart makes it less likely that he will harm Stampy.

Solution:

(a) Let H be the event that the man will hurt Stampy, let L be the event that a man
has lots of ivory, and let D be the event that the man is an ivory dealer.

(b) Lisa observes that L is true. She suggests (reasonably) that this evidence makes D
more likely, i.e., P (D|L) > P (D). Implicitly, she suggests that this makes it likely that
the man will hurt Stampy, i.e.,

P (H|L) > P (H|Lc).

Homer argues that
P (H|L) < P (H|Lc).

(c) Homer does not realize that observing that Blackheart has so much ivory makes
it much more likely that Blackheart is an ivory dealer, which in turn makes it more
likely that the man will hurt Stampy. This is an example of Simpson’s paradox. It may
be true that, controlling for whether or not Blackheart is a dealer, having high ivory
supplies makes it less likely that he will harm Stampy: P (H|L,D) < P (H|Lc, D) and
P (H|L,Dc) < P (H|Lc, Dc). However, this does not imply that P (H|L) < P (H|Lc).

51. (a) There are two crimson jars (labeled C1 and C2) and two mauve jars (labeled M1 and
M2). Each jar contains a mixture of green gummi bears and red gummi bears. Show by
example that it is possible that C1 has a much higher percentage of green gummi bears
than M1, and C2 has a much higher percentage of green gummi bears than M2, yet if
the contents of C1 and C2 are merged into a new jar and likewise for M1 and M2, then
the combination of C1 and C2 has a lower percentage of green gummi bears than the
combination of M1 and M2.

(b) Explain how (a) relates to Simpson’s paradox, both intuitively and by explicitly
defining events A,B,C as in the statement of Simpson’s paradox.

Solution:

(a) As an example, let C1 have 9 green, 1 red; M1 have 50 green, 50 red; C2 have 30
green, 70 red; M2 have 1 green, 9 red.

(b) This is a form of Simpson’s paradox since which jar color is more likely to provide
a green gummy bear flips depending on whether the jars get aggregated. To match
this example up to the notation used in the statement of Simpson’s paradox, let A
be the event that a red gummi bear is chosen in the random draw, B be the event
that it is drawn from a crimson jar, and C be the event that it is drawn from a jar
with index 1. With the numbers from the solution to (a), P (C|B) = 1/11 is much less
than P (C|Bc) = 10/11, which enables us to have P (A|B) < P (A|Bc) even though the
inequalities go the other way when we also condition on C or on Cc.

52. As explained in this chapter, Simpson’s paradox says that it is possible to have events
A,B,C such that P (A|B,C) < P (A|Bc, C) and P (A|B,Cc) < P (A|Bc, Cc), yet
P (A|B) > P (A|Bc).

(a) Can Simpson’s paradox occur if A and B are independent? If so, give a concrete
example (with both numbers and an interpretation); if not, prove that it is impossible.
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(b) Can Simpson’s paradox occur if A and C are independent? If so, give a concrete
example (with both numbers and an interpretation); if not, prove that it is impossible.

(c) Can Simpson’s paradox occur if B and C are independent? If so, give a concrete
example (with both numbers and an interpretation); if not, prove that it is impossible.

Solution:

(a) No, since if A and B are independent, then P (A|B) = P (A) = P (A|Bc), using the
fact that A is also independent of Bc.

(b) No, as shown by the following. Suppose that A and C are independent and that the
first two inequalities in Simpson’s paradox hold. Then by LOTP,

P (A) = P (A|C)

= P (A|C,B)P (B|C) + P (A|C,Bc)P (Bc|C)

< P (A|C,Bc)P (B|C) + P (A|C,Bc)P (Bc|C)

= P (A|C,Bc),

so
P (A) < P (A|C,Bc).

Similarly, P (A) = P (A|Cc) gives

P (A) < P (A|Cc, Bc).

Thus,
P (A) < P (A|Bc),

since P (A|Bc) is a weighted average of P (A|C,Bc) and P (A|Cc, Bc) (so is in between
them). But then

P (A|B) < P (A|Bc),
since P (A) is a weighted average of P (A|B) and P (A|Bc) (so is in between them).

(c) No, as shown by the following. Suppose that B and C are independent and that the
first two inequalities in Simpson’s paradox hold. Then LOTP (as on p. 60) yields

P (A|B) = P (A|C,B)P (C|B) + P (A|Cc, B)P (Cc|B)

< P (A|C,Bc)P (C|Bc) + P (A|Cc, Bc)P (Cc|Bc)
= P (A|Bc).

53. s© The book Red State, Blue State, Rich State, Poor State by Andrew Gelman [13]
discusses the following election phenomenon: within any U.S. state, a wealthy voter is
more likely to vote for a Republican than a poor voter, yet the wealthier states tend
to favor Democratic candidates! In short: rich individuals (in any state) tend to vote
for Republicans, while states with a higher percentage of rich people tend to favor
Democrats.

(a) Assume for simplicity that there are only 2 states (called Red and Blue), each
of which has 100 people, and that each person is either rich or poor, and either a
Democrat or a Republican. Make up numbers consistent with the above, showing how
this phenomenon is possible, by giving a 2 × 2 table for each state (listing how many
people in each state are rich Democrats, etc.).

(b) In the setup of (a) (not necessarily with the numbers you made up there), let
D be the event that a randomly chosen person is a Democrat (with all 200 people
equally likely), and B be the event that the person lives in the Blue State. Suppose
that 10 people move from the Blue State to the Red State. Write Pold and Pnew for
probabilities before and after they move. Assume that people do not change parties,
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so we have Pnew(D) = Pold(D). Is it possible that both Pnew(D|B) > Pold(D|B) and
Pnew(D|Bc) > Pold(D|Bc) are true? If so, explain how it is possible and why it does not
contradict the law of total probability P (D) = P (D|B)P (B) + P (D|Bc)P (Bc); if not,
show that it is impossible.

Solution:

(a) Here are two tables that are as desired:

Red Dem Rep Total

Rich 5 25 30

Poor 20 50 70

Total 25 75 100

Blue Dem Rep Total

Rich 45 15 60

Poor 35 5 40

Total 80 20 100

In these tables, within each state a rich person is more likely to be a Republican than a
poor person; but the richer state has a higher percentage of Democrats than the poorer
state. Of course, there are many possible tables that work.

The above example is a form of Simpson’s paradox: aggregating the two tables seems
to give different conclusions than conditioning on which state a person is in. Letting
D,W,B be the events that a randomly chosen person is a Democrat, wealthy, and from
the Blue State (respectively), for the above numbers we have P (D|W,B) < P (D|W c, B)
and P (D|W,Bc) < P (D|W c, Bc) (controlling for whether the person is in the Red State
or the Blue State, a poor person is more likely to be a Democrat than a rich person),
but P (D|W ) > P (D|W c) (stemming from the fact that the Blue State is richer and
more Democratic).

(b) Yes, it is possible. Suppose with the numbers from (a) that 10 people move from the
Blue State to the Red State, of whom 5 are Democrats and 5 are Republicans. Then
Pnew(D|B) = 75/90 > 80/100 = Pold(D|B) and Pnew(D|Bc) = 30/110 > 25/100 =
Pold(D|Bc). Intuitively, this makes sense since the Blue State has a higher percentage
of Democrats initially than the Red State, and the people who move have a percentage
of Democrats which is between these two values.

This result does not contradict the law of total probability since the weights P (B), P (Bc)
also change: Pnew(B) = 90/200, while Pold(B) = 1/2. The phenomenon could not occur
if an equal number of people also move from the Red State to the Blue State (so that
P (B) is kept constant).

Mixed practice

54. Fred decides to take a series of n tests, to diagnose whether he has a certain disease
(any individual test is not perfectly reliable, so he hopes to reduce his uncertainty by
taking multiple tests). Let D be the event that he has the disease, p = P (D) be the
prior probability that he has the disease, and q = 1 − p. Let Tj be the event that he
tests positive on the jth test.

(a) Assume for this part that the test results are conditionally independent given Fred’s
disease status. Let a = P (Tj |D) and b = P (Tj |Dc), where a and b don’t depend on j.
Find the posterior probability that Fred has the disease, given that he tests positive on
all n of the n tests.

(b) Suppose that Fred tests positive on all n tests. However, some people have a certain
gene that makes them always test positive. Let G be the event that Fred has the gene.
Assume that P (G) = 1/2 and that D and G are independent. If Fred does not have the
gene, then the test results are conditionally independent given his disease status. Let
a0 = P (Tj |D,Gc) and b0 = P (Tj |Dc, Gc), where a0 and b0 don’t depend on j. Find the
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posterior probability that Fred has the disease, given that he tests positive on all n of
the tests.

Solution:

(a) Let T = T1∩· · ·∩Tn be the event that Fred tests positive on all the tests. By Bayes’
rule and LOTP,

P (D|T ) =
P (T |D)P (D)

P (T )
=

pan

pan + qbn
.

(b) Let T be the event that Fred tests positive on all n tests. Then

P (D|T ) =
P (T |D)P (D)

P (T )
=

pP (T |D)

pP (T |D) + qP (T |Dc)
.

Conditioning on whether or not he has the gene, we have

P (T |D) = P (T |D,G)P (G|D) + P (T |D,Gc)P (Gc|D) =
1

2
+
an0
2
,

P (T |Dc) = P (T |Dc, G)P (G|Dc) + P (T |Dc, Gc)P (Gc|Dc) =
1

2
+
bn0
2
.

Thus,

P (D|T ) =
p(1 + an0 )

p(1 + an0 ) + q(1 + bn0 )
.

55. A certain hereditary disease can be passed from a mother to her children. Given that
the mother has the disease, her children independently will have it with probability 1/2.
Given that she doesn’t have the disease, her children won’t have it either. A certain
mother, who has probability 1/3 of having the disease, has two children.

(a) Find the probability that neither child has the disease.

(b) Is whether the elder child has the disease independent of whether the younger child
has the disease? Explain.

(c) The elder child is found not to have the disease. A week later, the younger child is
also found not to have the disease. Given this information, find the probability that the
mother has the disease.

Solution:

(a) Let M,A,B be the events that the mother, elder child, and younger child have the
disease (respectively). Then

P (Ac, Bc) = P (Ac, Bc|M)P (M) + P (Ac, Bc|Mc)P (Mc) =
1

2
· 1

2
· 1

3
+

2

3
=

3

4
.

(b) These events are conditionally independent given the disease status of the mother,
but they are not independent. Knowing whether the elder child has the disease gives
information about whether the mother has the disease, which in turn gives information
about whether the younger child has the disease.

(c) By Bayes’ rule,

P (M |Ac, Bc) =
P (Ac, Bc|M)P (M)

P (Ac, Bc)
=

1
2
· 1

2
· 1

3
3
4

=
1

9
.

Alternatively, we can do the conditioning in two steps: first condition on Ac, giving

P (M |Ac) =
P (Ac|M)P (M)

P (Ac)
=

1
2
· 1

3
1
2
· 1

3
+ 2

3

=
1

5
.
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Then do further conditioning on Bc, giving

P (M |Ac, Bc) =
P (Bc|M,Ac)P (M |Ac)

P (Bc|Ac) =
1
2
· 1

5
1
2
· 1

5
+ 4

5

=
1

9
,

which agrees with the result of the one-step method.

56. Three fair coins are tossed at the same time. Explain what is wrong with the following
argument: “there is a 50% chance that the three coins all landed the same way, since
obviously it is possible to find two coins that match, and then the other coin has a 50%
chance of matching those two”.

Solution: The probability of all three coins landing the same way is 1/8 + 1/8 = 1/4,
so clearly there is something wrong with the argument. What is wrong is that which
two out of the three coins match is not specified, so “the other coin” is not well-defined.
Given that the first two flips match, it is true that there is a 50% chance that the third
flip matches those, but knowing that there is at least one pair of tosses that match does
not provide a specific pair that matches. (The argument under discussion is known as
Galton’s paradox.)

57. An urn contains red, green, and blue balls. Let r, g, b be the proportions of red, green,
blue balls, respectively (r + g + b = 1).

(a) Balls are drawn randomly with replacement. Find the probability that the first time
a green ball is drawn is before the first time a blue ball is drawn.

Hint: Explain how this relates to finding the probability that a draw is green, given that
it is either green or blue.

(b) Balls are drawn randomly without replacement. Find the probability that the first
time a green ball is drawn is before the first time a blue ball is drawn. Is the answer the
same or different than the answer in (a)?

Hint: Imagine the balls all lined up, in the order in which they will be drawn. Note that
where the red balls are standing in this line is irrelevant.

(c) Generalize the result from (a) to the following setting. Independent trials are per-
formed, and the outcome of each trial is classified as being exactly one of type 1, type 2,
. . . , or type n, with probabilities p1, p2, . . . , pn, respectively. Find the probability that
the first trial to result in type i comes before the first trial to result in type j, for i 6= j.

Solution:

(a) Red balls are irrelevant here. What matters is whether the first non-red ball drawn
is green or blue. The probability that this ball is green is

P (green|green or blue) =
P (green)

P (green or blue)
=

g

g + b
.

(b) Let N be the total number of balls, so there are rN, gN, bN red, green, and blue
balls, respectively. Line the balls up in the order in which they will be drawn. Now
look at the first non-red ball. By symmetry, it is equally like to be any of the gN + bN
non-red balls. The probability that it is green is

gN

gN + bN
=

g

g + b
,

which is the same as the answer in (a).

(c) Arguing as in (a), the probability of getting type i before type j (for i 6= j is

P (type i|type i or type j) =
P (type i)

P (type i or type j)
=

pi
pi + pj

.
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58. Marilyn vos Savant was asked the following question for her column in Parade:

You’re at a party with 199 other guests when robbers break in and announce
that they are going to rob one of you. They put 199 blank pieces of paper in
a hat, plus one marked “you lose.” Each guest must draw, and the person
who draws “you lose” will get robbed. The robbers offer you the option of
drawing first, last, or at any time in between. When would you take your
turn?

The draws are made without replacement, and for (a) are uniformly random.

(a) Determine whether it is optimal to draw first, last, or somewhere in between (or
whether it does not matter), to maximize the probability of not being robbed. Give a
clear, concise, and compelling explanation.

(b) More generally, suppose that there is one “you lose” piece of paper, with “weight”
v, and there are n blank pieces of paper, each with “weight” w. At each stage, draws
are made with probability proportional to weight, i.e., the probability of drawing a
particular piece of paper is its weight divided by the sum of the weights of all the
remaining pieces of paper. Determine whether it is better to draw first or second (or
whether it does not matter); here v > 0, w > 0, and n ≥ 1 are known constants.

Solution:

(a) By symmetry, it does not matter: unconditionally, the jth draw is equally likely to
be any of the 200 pieces of paper.

(b) Drawing first, the probability of being robbed is v/(v + nw). Drawing second, by
LOTP the probability of being robbed is

0 · v

v + nw
+

v

v + (n− 1)w
· nw

v + nw
=

vnw

(v + (n− 1)w)(v + nw)
.

This is greater than v/(v+nw) if and only if nw > v+ (n− 1)w, which is equivalent to
v < w. Similarly, it is less than v/(v + nw) if v > w, and equal if v = w. So it is better
to draw first if v < w, and draw second if v > w (and it does not matter if v = w).
Interestingly, the optimal choice does not depend on n. Note that this result is correct
in the simple case n = 1, in the case v = w (which reduces to the previous part), and
in the extreme case where v is much, much larger than w.

59. Let D be the event that a person develops a certain disease, and C be the event that
the person was exposed to a certain substance (e.g., D may correspond to lung cancer
and C may correspond to smoking cigarettes). We are interested in whether exposure
to the substance is related to developing the disease (and if so, how they are related).

The odds ratio is a very widely used measure in epidemiology of the association between
disease and exposure, defined as

OR =
odds(D|C)

odds(D|Cc) ,

where conditional odds are defined analogously to unconditional odds: odds(A|B) =
P (A|B)
P (Ac|B)

. The relative risk of the disease for someone exposed to the substance, another
widely used measure, is

RR =
P (D|C)

P (D|Cc) .

The relative risk is especially easy to interpret, e.g., RR = 2 says that someone exposed
to the substance is twice as likely to develop the disease as someone who isn’t exposed
(though this does not necessarily mean that the substance causes the increased chance
of getting the disease, nor is there necessarily a causal interpretation for the odds ratio).

(a) Show that if the disease is rare, both for exposed people and for unexposed people,
then the relative risk is approximately equal to the odds ratio.

(b) Let pij for i = 0, 1 and j = 0, 1 be the probabilities in the following 2× 2 table.
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D Dc

C p11 p10

Cc p01 p00

For example, p10 = P (C,Dc). Show that the odds ratio can be expressed as a cross-
product ratio, in the sense that

OR =
p11p00

p10p01
.

(c) Show that the odds ratio has the neat symmetry property that the roles of C and
D can be swapped without changing the value:

OR =
odds(C|D)

odds(C|Dc)
.

This property is one of the main reasons why the odds ratio is so widely used, since it
turns out that it allows the odds ratio to be estimated in a wide variety of problems
where relative risk would be hard to estimate well.

Solution:

(a) The odds ratio is related to the relative risk by

OR =
P (D|C)/P (Dc|C)

P (D|Cc)/P (Dc|Cc) = RR · P (Dc|Cc)
P (Dc|C)

.

So OR ≈ RR if both P (Dc|Cc) and P (Dc|C) are close to 1.

(b) By definition of conditional probability,

OR =
P (D|C)P (Dc|Cc)
P (D|Cc)P (Dc|C)

=
P (D,C)P (Dc, Cc)

P (D,Cc)P (Dc, C)
=
p11p00

p10p01
.

(c) We have

odds(C|D)

odds(C|Dc)
=
P (C|D)P (Cc|Dc)

P (C|Dc)P (Cc|D)
=
P (C,D)P (Cc, Dc)

P (C,Dc)P (Cc, D)
= OR.

60. A researcher wants to estimate the percentage of people in some population who have
used illegal drugs, by conducting a survey. Concerned that a lot of people would lie
when asked a sensitive question like “Have you ever used illegal drugs?”, the researcher
uses a method known as randomized response. A hat is filled with slips of paper, each
of which says either “I have used illegal drugs” or “I have not used illegal drugs”. Let p
be the proportion of slips of paper that say “I have used illegal drugs” (p is chosen by
the researcher in advance).

Each participant chooses a random slip of paper from the hat and answers (truthfully)
“yes” or “no” to whether the statement on that slip is true. The slip is then returned
to the hat. The researcher does not know which type of slip the participant had. Let
y be the probability that a participant will say “yes”, and d be the probability that a
participant has used illegal drugs.

(a) Find y, in terms of d and p.

(b) What would be the worst possible choice of p that the researcher could make in
designing the survey? Explain.

(c) Now consider the following alternative system. Suppose that proportion p of the slips
of paper say “I have used illegal drugs”, but that now the remaining 1 − p say “I was
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born in winter” rather than “I have not used illegal drugs”. Assume that 1/4 of people
are born in winter, and that a person’s season of birth is independent of whether they
have used illegal drugs. Find d, in terms of y and p.

Solution:

(a) Let A be the event that the participant will draw a “I have used illegal drugs” slip,
and Y be the event that there is a “yes” response. By the law of total probability,

P (Y ) = P (Y |A)P (A) + P (Y |Ac)P (Ac),

so

y = dp+ (1− d)(1− p).

(b) The worst possible choice is p = 1/2, since then the survey gives no information about
d, which is the main quantity of interest. Mathematically, this can be seen by trying to
solve the equation from (a) for d in terms of y and p; this gives d = (y+ p− 1)/(2p− 1)
for p 6= 1/2, but would involve dividing by 0 for p = 1/2. Intuitively, this makes sense
since the p = 1/2 case is like dealing with someone who tells the truth half the time
and lies half the time (someone who always tells the truth or always lies is much more
informative!).

(c) LOTP gives

y = dp+
1− p

4
,

so d = (y− 1/4)/p+ 1/4 (for p 6= 0). This makes sense since if p = 0, the survey is only
asking about whether people were born in winter (and then y = 1/4, and the survey
gives no information about d), while if p = 1 the survey is only asking about drug use
(and then d = y, and the survey isn’t actually using the randomized response idea).

61. At the beginning of the play Rosencrantz and Guildenstern are Dead by Tom Stoppard,
Guildenstern is spinning coins and Rosencrantz is betting on the outcome for each. The
coins have been landing Heads over and over again, prompting the following remark:

Guildenstern: A weaker man might be moved to re-examine his faith, if
in nothing else at least in the law of probability.

The coin spins have resulted in Heads 92 times in a row.

(a) Fred and his friend are watching the play. Upon seeing the events described above,
they have the following conversation:

Fred : That outcome would be incredibly unlikely with fair coins. They
must be using trick coins (maybe with double-headed coins), or the experi-
ment must have been rigged somehow (maybe with magnets).

Fred’s friend: It’s true that the string HH. . . H of length 92 is very un-
likely; the chance is 1/292 ≈ 2×10−28 with fair coins. But any other specific
string of H’s and T’s with length 92 has exactly the same probability! The
reason the outcome seems extremely unlikely is that the number of possible
outcomes grows exponentially as the number of spins grows, so any outcome
would seem extremely unlikely. You could just as well have made the same
argument even without looking at the results of their experiment, which
means you really don’t have evidence against the coins being fair.

Discuss these comments, to help Fred and his friend resolve their debate.

(b) Suppose there are only two possibilities: either the coins are all fair (and spun fairly),
or double-headed coins are being used (in which case the probability of Heads is 1). Let
p be the prior probability that the coins are fair. Find the posterior probability that the
coins are fair, given that they landed Heads in 92 out of 92 trials.
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(c) Continuing from (b), for which values of p is the posterior probability that the coins
are fair greater than 0.5? For which values of p is it less than 0.05?

Solution:

(a) Fred is correct that the outcome HH. . . H is extremely suspicious, but Fred’s friend is
correct that with a fair coin, any specific string of H’s and T’s of length 92 has the same
probability. To reconcile these statements, note that there is only 1 string of length 92
with 92 H’s, whereas there are a vast number of strings with about half H’s and about
half T’s. For example, there are

(
92
46

)
≈ 4.1 × 1026 strings of length 92 with 46 H’s and

46 T’s. It is enormously more likely to have 46 H’s and 46 T’s (with a fair coin) than
92 H’s, even though any specific string with 46 H’s and 46 T’s has the same probability
as HH. . . H. Furthermore, there are an even vaster number of possibilities where the
number of Heads is roughly equal to the number of Tails.

We should check, however, that Fred is not just doing data snooping (also known as
data fishing) after observing the data. By trying a lot of different calculations with the
data that are not prescribed in advance, it is easy to find unusual patterns in a data
set, but it is highly dangerous and misleading to present such results without reporting
how many calculations were tried, and when and how it was decided which calculations
to do. In this case though, looking at the number of Heads in a sequence of coin tosses
is a very simple, common, natural summary of the data, and there is no reason to think
that Fred was fishing for something suspicious.

There could also be a selection bias at play: maybe millions of such experiments are per-
formed, by people all over the world and at different points in time, and Tom Stoppard
wrote about this particular incident because the outcome was so interesting. Likewise,
it’s not surprising to read in the news that someone won the lottery, when millions of
people are entering the lottery; the news article reports on the person who won the
lottery because they won. But having no Heads in 92 trials is so staggeringly unlikely
(for a fair coin) that there would be good reason to be suspicious even if several billion
people were performing similar experiments and only the most extreme outcome was
selected to include in the play.

(b) Let F be the event that the coins are fair and A be the event that they land Heads
in 92 out of 92 trials. By Bayes’ rule and LOTP,

P (F |A) =
P (A|F )P (F )

P (A)
=

2−92 · p
2−92 · p+ 1− p =

p

p+ 292(1− p) .

(c) We have that
p

p+ 292(1− p) >
1

2

is equivalent to

p >
292

292 + 1
.

This says that p must be incredibly close to 1, since

292

292 + 1
= 1− 1

292 + 1
≈ 1− 2× 10−28.

On the other hand,
p

p+ 292(1− p) < 0.05

is equivalent to

p <
292

292 + 19
.

Unless p is incredibly close to 1, the above inequality will hold.
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62. There are n types of toys, which you are collecting one by one. Each time you buy a
toy, it is randomly determined which type it has, with equal probabilities. Let pij be the
probability that just after you have bought your ith toy, you have exactly j toy types
in your collection, for i ≥ 1 and 0 ≤ j ≤ n. (This problem is in the setting of the coupon
collector problem, a famous problem which we study in Example 4.3.11.)

(a) Find a recursive equation expressing pij in terms of pi−1,j and pi−1,j−1, for i ≥ 2
and 1 ≤ j ≤ n.

(b) Describe how the recursion from (a) can be used to calculate pij .

Solution:

(a) There are two ways to have exactly j toy types just after buying your ith toy: either
you have exactly j − 1 toy types just after buying your i− 1st toy and then the ith toy
you buy is of a type you don’t already have, or you already have exactly j toy types just
after buying your i− 1st toy and then the ith toy you buy is of a type you do already
have. Conditioning on how many toy types you have just after buying your i− 1st toy,

pij = pi−1,j−1
n− j + 1

n
+ pi−1,j

j

n
.

(b) First note that p11 = 1, and pij = 0 for j = 0 or j > i. Now sup-
pose that we have computed pi−1,1, pi−1,2, . . . , pi−1,i−1 for some i ≥ 2. Then we
can compute pi,1, pi,2, . . . , pi,i using the recursion from (a). We can then compute
pi+1,1, pi+1,2, . . . , pi+1,i+1 using the recursion from (a), and so on. By induction, it fol-
lows that we can obtain any desired pij recursively by this method.

63. A/B testing is a form of randomized experiment that is used by many companies to
learn about how customers will react to different treatments. For example, a company
may want to see how users will respond to a new feature on their website (compared
with how users respond to the current version of the website) or compare two different
advertisements.

As the name suggests, two different treatments, Treatment A and Treatment B, are
being studied. Users arrive one by one, and upon arrival are randomly assigned to one
of the two treatments. The trial for each user is classified as “success” (e.g., the user
made a purchase) or “failure”. The probability that the nth user receives Treatment A
is allowed to depend on the outcomes for the previous users. This set-up is known as a
two-armed bandit.

Many algorithms for how to randomize the treatment assignments have been studied.
Here is an especially simple (but fickle) algorithm, called a stay-with-a-winner procedure:

(i) Randomly assign the first user to Treatment A or Treatment B, with equal proba-
bilities.

(ii) If the trial for the nth user is a success, stay with the same treatment for the
(n+ 1)st user; otherwise, switch to the other treatment for the (n+ 1)st user.

Let a be the probability of success for Treatment A, and b be the probability of success
for Treatment B. Assume that a 6= b, but that a and b are unknown (which is why
the test is needed). Let pn be the probability of success on the nth trial and an be the
probability that Treatment A is assigned on the nth trial (using the above algorithm).

(a) Show that

pn = (a− b)an + b,

an+1 = (a+ b− 1)an + 1− b.

(b) Use the results from (a) to show that pn+1 satisfies the following recursive equation:

pn+1 = (a+ b− 1)pn + a+ b− 2ab.
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(c) Use the result from (b) to find the long-run probability of success for this algorithm,
limn→∞ pn, assuming that this limit exists.

Solution:

(a) Conditioning on which treatment is applied to the nth user, we have

pn = ana+ (1− an)b = (a− b)an + b.

Treatment A will be applied to the (n + 1)st user if and only if (i) Treatment A is
successfully applied to the nth user or (ii) Treatment B is unsuccessfully applied to the
nth user. Again conditioning on which treatment is applied to the nth user, we have

an+1 = aan + (1− b)(1− an) = (a+ b− 1)an + 1− b.

(b) Plugging the recursion for an+1 into the recursion

pn+1 = (a− b)an+1 + b,

we have
pn+1 = (a− b)((a+ b− 1)an + 1− b) + b.

Replacing an by (pn − b)/(a− b), we have

pn+1 = (a− b)
(

(a+ b− 1)
pn − b
a− b + 1− b

)
+ b

= (a+ b− 1)(pn − b) + (a− b)(1− b) + b

= (a+ b− 1)pn + a+ b− 2ab.

(c) Let p = limn→∞ pn (assuming that this exists). Taking the limit as n→∞ on both
sides of

pn+1 = (a+ b− 1)pn + a+ b− 2ab,

we have
p = (a+ b− 1)p+ a+ b− 2ab.

Therefore,

p =
a+ b− 2ab

2− a− b .

64. In humans (and many other organisms), genes come in pairs. A certain gene comes in
two types (alleles): type a and type A. The genotype of a person for that gene is the
types of the two genes in the pair: AA,Aa, or aa (aA is equivalent to Aa). Assume that
the Hardy-Weinberg law applies here, which means that the frequencies of AA,Aa, aa
in the population are p2, 2p(1− p), (1− p)2 respectively, for some p with 0 < p < 1.

When a woman and a man have a child, the child’s gene pair consists of one gene
contributed by each parent. Suppose that the mother is equally likely to contribute
either of the two genes in her gene pair, and likewise for the father, independently.
Also suppose that the genotypes of the parents are independent of each other (with
probabilities given by the Hardy-Weinberg law).

(a) Find the probabilities of each possible genotype (AA,Aa, aa) for a child of two
random parents. Explain what this says about stability of the Hardy-Weinberg law
from one generation to the next.

Hint: Condition on the genotypes of the parents.

(b) A person of type AA or aa is called homozygous (for the gene under consideration),
and a person of type Aa is called heterozygous (for that gene). Find the probability
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that a child is homozygous, given that both parents are homozygous. Also, find the
probability that a child is heterozygous, given that both parents are heterozygous.

(c) Suppose that having genotype aa results in a distinctive physical characteristic, so it
is easy to tell by looking at someone whether or not they have that genotype. A mother
and father, neither of whom are of type aa, have a child. The child is also not of type
aa. Given this information, find the probability that the child is heterozygous.

Hint: Use the definition of conditional probability. Then expand both the numerator
and the denominator using LOTP, conditioning on the genotypes of the parents.

Solution:

(a) Let MAA, FAA, CAA be the events that the mother, father, and child (respectively)
have genotype AA, and likewise define MAa etc. Then

P (CAA) = P (CAA|MAA, FAA)P (MAA, FAA) + P (CAA|MAA, FAa)P (MAA, FAa)

+ P (CAA|MAa, FAA)P (MAa, FAA) + P (CAA|MAa, FAa)P (MAa, FAa)

= p4 +
1

2
p2(2p(1− p)) +

1

2
p2(2p(1− p)) +

1

4
(2p(1− p))2

= p4 + 2p3 − 2p4 + p2(1− 2p+ p2)

= p2.

Let q = 1− p. Swapping A’s and a’s and swapping p’s and q’s in the above calculation,

P (Caa) = q2 = (1− p)2.

It follows that

P (CAa) = 1− P (CAA)− P (Caa) = 1− p2 − (1− p)2 = 2p− 2p2 = 2p(1− p).

So the Hardy-Weinberg law is stable, in the sense that the probabilities for the various
genotypes are preserved from one generation to the next.

(b) Let H be the event that both parents are homozygous. Then

P (child homozygous|H) = P (CAA|H) + P (Caa|H).

To find P (CAA|H), we can do further conditioning on the exact genotypes of the parents:

P (CAA|H) = P (CAA|MAA, FAA)P (MAA, FAA|H) + P (CAA|MAA, Faa)P (MAA, Faa|H)

+ P (CAA|Maa, FAA)P (Maa, FAA|H) + P (CAA|Maa, Faa)P (Maa, Faa|H)

= P (MAA, FAA|H),

since all the terms except the first are zero (because, for example, an AA mother and aa
father can’t produce an AA child). This result can also be seen directly by noting that,
given H, the child being AA is equivalent to both parents being AA. Next, we have

P (MAA, FAA|H) =
P (MAA, FAA, H)

P (H)
=
P (MAA, FAA)

P (H)
=

p4

(p2 + (1− p)2)2
.

By symmetry, we have

P (Caa|H) = P (Maa, Faa|H) =
(1− p)4

((1− p)2 + p2)2
.

Hence,

P (child homozygous|H) =
p4 + (1− p)4

(p2 + (1− p)2)2
.
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Lastly,

P (child heterozygous|both parents heterozygous) =
1

2
since if both parents are Aa, then a child will be heterozygous if and only if they receive
the mother’s A and the father’s a or vice versa.

(c) We wish to find P (CAa|Ccaa ∩Mc
aa ∩ F caa). Let

G = CAa ∩Mc
aa ∩ F caa and H = Ccaa ∩Mc

aa ∩ F caa.

Then

P (CAa|Ccaa ∩Mc
aa ∩ F caa) =

P (G)

P (H)
,

and

P (G) = P (G|MAA, FAA)P (MAA, FAA) + P (G|MAA, FAa)P (MAA, FAa)

+ P (G|MAa, FAA)P (MAa, FAA) + P (G|MAa, FAa)P (MAa, FAa)

= 0 +
1

2
p2(2p(1− p)) +

1

2
p2(2p(1− p)) +

1

2
(2p(1− p))2

= 2p2(1− p),

while

P (H) = P (H|MAA, FAA)P (MAA, FAA) + P (H|MAA, FAa)P (MAA, FAa)

+ P (H|MAa, FAA)P (MAa, FAA) + P (H|MAa, FAa)P (MAa, FAa)

= p4 + p2(2p(1− p)) + p2(2p(1− p)) +
3

4
(2p(1− p))2

= p2(3− 2p).

Thus,

P (CAa|Ccaa ∩Mc
aa ∩ F caa) =

2p2(1− p)
p2(3− 2p)

=
2− 2p

3− 2p
.

65. A standard deck of cards will be shuffled and then the cards will be turned over one at
a time until the first ace is revealed. Let B be the event that the next card in the deck
will also be an ace.

(a) Intuitively, how do you think P (B) compares in size with 1/13 (the overall proportion
of aces in a deck of cards)? Explain your intuition. (Give an intuitive discussion rather
than a mathematical calculation; the goal here is to describe your intuition explicitly.)

(b) Let Cj be the event that the first ace is at position j in the deck. Find P (B|Cj) in
terms of j, fully simplified.

(c) Using the law of total probability, find an expression for P (B) as a sum. (The sum
can be left unsimplified, but it should be something that could easily be computed in
software such as R that can calculate sums.)

(d) Find a fully simplified expression for P (B) using a symmetry argument.

Hint: If you were deciding whether to bet on the next card after the first ace being an
ace or to bet on the last card in the deck being an ace, would you have a preference?

Solution:

(a) Intuitively, it may seem that P (B) < 1/13 since we know an ace has been depleted
from the deck and don’t know anything about how many (if any) non-aces were depleted.
On the other hand, it clearly matters how many cards are needed to reach the first ace
(in the extreme case where the first ace is at the 49th card, we know the next 3 cards
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are aces). But we are not given information about the number of cards needed to reach
the first ace. Of course, we can condition on it, which brings us to the next two parts.

(b) There are 52− j remaining cards in the deck, of which 3 are aces. By symmetry, the
next card is equally likely to be any of the remaining cards. So

P (B|Cj) =
3

52− j .

(c) LOTP yields

P (B) =

49∑
j=1

P (B|Cj)P (Cj) =

49∑
j=1

(
48
j−1

)(
52
j−1

) · 4

52− j + 1
· 3

52− j ,

where the ratio of binomial coefficients is used to get the probability of the deck starting
out with j − 1 non-aces. Computing the sum was not required for this part, but to do
so in R we can type

j <- 1:49

sum(choose(48,j-1)/choose(52,j-1)*(4/(52-j+1))*(3/(52-j)))

(d) At any stage, by symmetry all unrevealed cards are completely interchangeable (in
statistics, they are said to be exchangeable). Let L be the event that the last card in
the deck is an ace. By symmetry, P (B|Cj) = P (L|Cj) for any j. So P (B) = P (L)
unconditionally too (by LOTP). Thus,

P (B) = P (L) =
1

13
.


