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Chapter Two

THE EQUATIONS OF STEADY
ONE- DIMENSIONAL COMPRESSIBLE
FLUID FLOW
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INTRODUCTION

Many of the compressible flows that occur In
engineering practice can be adequately modeled as a steady
flow (i.e., not changing with time) through a duct or
streamtube whose cross-sectional area is changing relatively
slowly in the flow direction. A duct is here taken to mean a
solid walled channel while a streamtube is defined by
considering a closed curve drawn in a fluid flow.
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A series of streamlines will pass through this curve as shown
In the following figure.

AE, BF, CG, DH are Streamlines

All Streamlines that pass
throuih Curve ABCD also
{)ass through Curve EFGH,
hese Streamlines then
forming a Streamtube

Definition of a Streamtube
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Further downstream, these streamlines can be joined
by another curve as shown in the figure. Since there is no
flow normal to a streamline, in steady flow the rate at which
fluid crosses the area defined by the first curve is equal to
the rate fluid at which crosses the area defined by the second
curve. The streamlines passing through the curves,
therefore, effectively define the “walls” of a duct and this
“duct” is called a streamtube. Of course, In the case of a
duct with solid walls, streamlines lie along the walls and the
duct is, effectively, also a streamtube.
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In the case of both flow through a streamtube and flow
through a solid-walled duct, there can be no flow through the
“walls” of the duct, there being no flow through a solid wall
and, by definition, no flow normal to a streamline. The two

types of duct are shown in the following figure.

'ABCD is a Solid Walled Channel

Solid Walled Channel and Streamtube

Streamlines

ABCD is a Streamtube
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Example of the type of flow being considered in this
chapter are those through the blade passages in a turbine and
the flow through a nozzle fitted to a rocket engine, these being
shown in the following figure.

Quasi One—

Dimensional Flow \

Quasi One—
— Dimensional Flow

Typical Duct Flows
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In many such practical situations it is adequate to
assume that the flow iIs steady and one-dimensional. As
discussed in the previous chapter, steady flow implies that
none of the properties of the flow are varying. with time. In
most real flows that are steady on the average, the
Instantaneous values of the flow properties, In fact,
fluctuate about mean the values. However, an analysis of
such flows based on the assumption of steady flow usually
gives a good description of the mean values of the flow
variables.
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One-dimensional flow is, strictly, flow in which the
reference axes can be so chosen that the velocity vector has
only one component over the portion of the flow field
considered, i.e. if u, v and w are the x, y and z components of
the velocity vector then, strictly, for the flow to be one-
dimensional it I1s necessary that it be possible for the x
direction to be so chosen that the velocity components v and

W are zero (see figure).

One-Dimensional Flow




Compressible Fluid Flow

In a one-dimensional flow the velocity at a section of the
duct will here be given the symbol V as indicated in the
following figure.

Definition of a Velocity V
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Strictly speaking, the equations of one-dimensional flow are
only applicable to flow in a straight pipe or stream tube of
constant area. However, in many practical situations, the
equations of one-dimensional flow can be applied with
acceptable accuracy to flows with a variable area provided
that the rate of change of area and the curvature are small
enough for one component of the velocity vector to remain
dominant over the other two components.
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For example, although the flow through a nozzle of the type
shown in the following figure is not strictly one-dimensional,
because v remains very much less than u, the flow can be
calculated with sufficient accuracy for most purposes by
Ignoring v and assuming that the flow is one-dimensional I.e.
by only considering the variation of u with x.

Flow Situation That Can be Modelled as One-Dimensional
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Such flows in which the flow area is changing but in which
the flow at any section can be treated as one-dimensional,
are commonly referred to as “quasi one-dimensional’ flows.
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CONTROL VOLUME

The concept of a control volume is used In the
derivation and application of many equations of
compressible fluid flow. As discussed In the previous
chapter, a control volume Is an arbitrary imaginary volume
fixed relative to the coordinate system being used (the
coordinate system can be moving) and bounded by a control
surface through which fluid may pass as shown iIn the
following figure.
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Control
Volume

VY Y VY

)11

Control Volume in a General Two-Dimensional Flow.
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In applying the control volume concept, the effects of forces
on the control surface and mass and energy transfers through
this surface are considered. In general, it should be noted, it is
possible for conditions in the control volume to be changing
with time but for the reasons mentioned above attention will
here be restricted to steady flow in which conditions inside
and outside the control volume are constant in time in terms
of the coordinate system being used.
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In the case of one-dimensional duct flow that is here
being considered, control volumes of the type shown in the
following figure are used. These control volumes either cover
a differentially short length dx of the duct or a finite length of
the duct as shown in the figure.

Control
Volume

N, ®)

Finite length

Types of Control Volume Used In the Analysis of One-Dimensional Duct Flows,
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In the case of the differentially short control volume, the
changes In the flow variables through the control volume,
such as those in velocity and pressure i.e. d V and d p , will
also be small and in the analysis of the flow the products of
these differentially small changes such as d V x d p will be

neglected.
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CONTINUITY EQUATION: The continuity equation is
obtained by applying the principle of conservation of mass to
flow through a control volume. Consider the situation shown in
the following figure. The changes through this control volume
are iIndicated in this figure, it being recalled that one-
dimensional flow Is being considered.

[P St Lol

Control Volume Used In Derivation of Continuity Equation.
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Since there Is no mass transfer across the walls of the
stream tube, the only mass transfer occurs through the ends of
the control volume. If the possibility of a source of mass within
the control volume is excluded, the principle of conservation of
mass requires that the rate at which mass enters through the left
hand face of the control volume be equal to the rate at which
mass leaves through the right hand face of the control volume i.e.

that: rﬂf _ |’8§

Since the rate at which mass crosses any section of the duct, i.e., %
Is equal to p V A where A is the cross-sectional area of the duct at
the section considered, the above equation gives:

PV A = p,V, A,
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Control
Volume

p+dp
V+dV
A+dA

Differentially Short Control Volume Used In Derivation of Continuity Equation.

For the differentially short control volume shown in the
above figure, this equation gives:

PVA=(p+dp)(V+dV)(A+dA)

l.e., neglecting higher order terms as discussed above:

VAdp + pAdV + pVdA=0
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Dividing this equation by pVA then gives:

dp dV dA
+—F—=
o VvV A

0

This equation relates the fractional changes in density,
velocity and area over a short length of the control volume.
If the density can be assumed constant, this equation
Indicates that the fractional changes in velocity and area
have opposite signs, i.e. If the area increases the velocity will
decrease and vice versa. However, the equation indicates
that in compressible flow, where the fractional change In
density is significant, no such simple relation between area
and velocity changes exists.
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MOMENTUM EQUATION (EULER'S EQUATION): Euler’'s
equation Is obtained by applying conservation of momentum
to a control volume which again consists of a short length, dx,
of a stream tube. Steady flow Is again assumed. The forces
acting on the control volume are shown in the following

figure:

Pressure Force on
Curved Surface of
Control Volume,

Ve

.

Differentially Short Control Volume Used In Derivation of Momentum Equation.
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Because the flow is steady, conservation of momentum
requires that for this control volume the net force in direction
X be equal to the rate at which momentum leaves the control
volume in the x direction minus the rate at which it enters in
the Xx-direction since the flow iIs steady. Since, by the
fundamental assumptions previously listed, gravitational
forces are being neglected the only forces acting on the control
volume are the pressure forces and the frictional force exerted
on the surface of the control volume. Thus, the net force on
the control volume in the x-direction is:

pA - (p + dp)(A + dA) + %(p +p +dp)|[ (A +dA)-A| - dF,

The term dFH IS the frictional force.
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Rearranging the above equation then gives the net force on the
control volume in the x-direction as:

— Adp — dF,

In writing this equation, the higher order terms suchasd p x d
A have again been neglected since d x is taken to be small.

The rate at which momentum crosses any section of the duct iIs
equal to & V, the difference between the rate at which
momentum leaves the control volume and the rate at which
momentum enters the control volume is given by:

oVA[(V +dV)-V]=pVAdV

since no momentum enters through the curved walls of the
control volume.
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Since conservation of momentum requires that the
net force on the control volume be equal to the rate at which
momentum leaves the control volume minus the rate at
which it enters the control volume, the above equations give:

~Adp —dF, =pV Ad V

As discussed in the previous chapter, viscous friction
effects will be neglected in the initial portion of this course
l.e. the term dF, In the above equation is assumed to be
negligible. In this case, the equation can be rearranged to
give:

—dp=pVdV
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This equation, I.e.:
—dp=pVdV

IS Euler's equation for steady flow through a duct. Since V s,
by the choice of the x-direction, always positive, I.e. the X -
direction Is taken in the direction of the flow, this equation
Indicates that dp and dV are opposite in sign, i.e. that an
Increase In velocity Is always associated with a decrease In
pressure and vice versa. This i1s an obvious result because the
decrease In pressure is required to generate the force needed
to accelerate the flow, 1.e. to increase the velocity, and vice
versa.
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If Euler's equation is integrated in the x-direction along the
streamtube, It gives:

V? d

— + —p = constant

2 P

In order to evaluate the integral, the variation of density with
pressure must be known. If the flow can be assumed to be
Incompressible, 1.e. if the density can be assumed constant,
this equation gives:

V2 A
Y i P constant or ’OT + p = constant

2 p

which is, of course, Bernoulli's equation. It should, therefore,
be clearly understood that Bernoulli's equation only apples
In iIncompressible flow.
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STEADY FLOW ENERGY EQUATION: This states that,
for flow through the type of control volume considered
above, If the fluid enters at section 1 with velocity V, and
with enthalpy h, per unit mass, and leaves through section 2
with velocity V, and enthalpy h, then:

VA VA&
h,+—=%=h +-—-—+0g-W
t ==+

where g Is the heat transferred into the control volume per
unit mass of fluid flowing through it and w is the work done
by the fluid per unit mass in flowing through the control
volume. Attention will here be restricted to flows in which no
work Is done so that w Is zero.
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Further, since only calorically perfect gases are being
considered in this chapter:

h:cpT

Hence, the steady flow energy equation for the present
purposes can be written as:

V2 2
CHIP —|—72=CpT1 +\%+ q—w
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This equation indicates that in compressible flows,
changes In velocity will, in general, induce changes In
temperature and that heat addition can cause velocity
changes as well as temperature changes.

If the flow Is adiabatic, I.e. if there is no heat transfer
to or from the flow, the above equations give:

\VAs VA&
GRS 72: GRS ?

and:

c,dT + VdV = 0

This equation shows that in adiabatic flow, an increase In
velocity is always accompanied by a decrease in temperature.
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EQUATION OF STATE

When applied between any two points in the flow, this
equation gives:

P, _ P,
o] P /N P

When applied between the inlet and the exit of a
differentially short control volume, this equation becomes:

P p+dp
pT  (p+dp)(T +dT)
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Since dp/p, dp/p and dT/T are small, when higher order
terms are neglected this gives:

PP ®yg 22 9
p P T

ol ol
l.e.:
dp _dp _dT _,,
b p T

This equation shows how the changes in pressure, density
and temperature are interrelated in compressible flows.
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ENTROPY CONSIDERATIONS: In studying compressible
flows, another variable, the entropy, generally has to be
Introduced. The entropy basically places limitations on which
flow processes are physically possible and which are
physically excluded. The entropy change between any two
points in the flow is given by:

S,—S, =C, In(%)—RIn(%)
1 1

Since R=c,—C, , this equation can be written:

y—1

T PR
5w [2) 3]




Compressible Fluid Flow

If there is no change in entropy, i.e. if the flow is
Isentropic, this equation requires that:

y-1
T, _ [p_j y
T P
Hence, since the perfect gas law gives:

T, _ P oy
I, P o,
It follows that in isentropic flow:

14
Py _ (P_]
P, Py

In isentropic flows, then, P/ py IS a constant.
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If the entropy equation is applied between the inlet
and the exit of a differentially short control volume, it gives:

(s+ds)-s=c, In(T ;de—Rln( p;dpj

Since, If g1s a small quantity, In (1 + g) is to first order equal
to &, the above equation gives:

ds:cpd—T—R%
T p

which can be written as:




Compressible Fluid Flow

Lastly, it is noted that in an isentropic flow:

cdT :ﬂdp _dp
P p

But the energy equation for isentropic flow, i.e. for flow with
no heat transfer, gives:

deT + VdvV =0

which can be written as:

dp +VdV =0

Jo,
This is identical to the result obtained using conservation of
momentum considerations. In isentropic flow, then, it is not
necessary to consider both conservation of energy and
conservation of momentum since, when the *“isentropic
equation of state Is used, they give the same result.
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USE OF THE ONE-DIMENSIONAL FLOW EQUATIONS:
The most obvious application of the quasi-one-dimensional
equations iIs to flow through a solid walled duct or a
streamtube whose cross-sectional area is changing slowly
with distance as shown in the following figure:

®

.,
.,
-
-,

One-dimensgional Flow Through a Duct.
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For the one-dimensional flow assumption to be valid, the
rate of change of duct area with respect to the distance x along
the duct must remain small. However, in applying the one-
dimensional flow equations to the flow through a duct, it should
be noted that the flow does not have to be one-dimensional at
all sections of the duct in order to use the one-dimensional flow
equations. For example consider the following situation:

Duct in Which One-dimensional Flow Assumptions are not Valid Throughout the




Compressible Fluid Flow

The flow at section 2 cannot be assumed one dimensional.
However, the conditions at sections 1 and 3 can be related by
the one-dimensional equation.
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The one-dimensional equations also, as discussed above,
apply to the flow through any streamtube as discussed earlier.
An example streamtube is shown in the following figure:

Streamtube

One-dimensional Flow Through a Streamtube.

The flow along the streamtube shown in this figure will be
one-dimensional. As the fluid flows along this stream tube,

Its area changes and there are associated changes in the
pressure, temperature and density
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CONCLUDING REMARKS:

The equations discussed in the present chapter, while
only being strictly applicable to flows that are one-
dimensional, still form the basis of the analysis to an
acceptable degree of accuracy of many compressible fluid
flows that occur In engineering practice. The equations
clearly indicate how, In compressible flows, changes iIn
temperature and density are interlinked with changes in the
velocity field.




