
to solve the third equation for s in terms of r. Finally, substitute all of this into the

fourth equation:

((b+ r2 − a2/4)/2)2 − (
−2c+ a(b+ r2 − a2/4)

4r
)2 − d = 0

and multiply by r2 to remove denominators. This yields

0 =
1

4
r6 +

(
b

2
− 3a2

16

)
r4 +

(
3a4

64
− a2

4q
+

b2

4
+

ac

4
− d

)
r2

+

(
− a6

256
+

a4b

32
− a2

16b2
− a3c

16
+

abc

4
− c2

4

)

which is a cubic in r2.

1.14 (a) F. (b) T. (c) T. (d) T. (e) F. (f) F. (g) F. (h) T. (i) F. (j) F.

2 The Fundamental Theorem of Algebra

2.1 Use induction on ∂p. If p has no rational zeros then q = p and we are done. Otherwise,

p has a zero α1 ∈ Q. By the Remainder Theorem, (t− α1)|p, so p(t) = (t− α1)s(t) with

∂s = ∂p− 1 < ∂p. Inductively,

s(t) = (t− α2) · · · (t− αr)q(t)

where a has no rational zeros and the αj ∈ Q.

Clearly p(β) = 0 for rational β if and only if β = αj for some j, since q has no rational

zeros.

For uniqueness, suppose that also

p(t) = (t− β1) · · · (t− βs)Q(t)

where the βj ∈ Q and Q has no rational zeros. Then

(t− α1) · · · (t− αr)q(t) = (t− β1) · · · (t− βs)Q(t)

Cancelling any common linear factors we can assume that the αi and βj are distinct.

If r > 0 then

0 = p(α1) = (α1 − β1) · · · (α1 − βs)Q(α1)

so Q(α1) = 0, a contradiction. Therefore r = 0. Similarly s = 0, so q = Q and the result

follows.

2.2 As an example, we prove the commutative law for addition. By definition,

(an) + (bn) = (tn), where tn = an + bn

(bn) + (an) = (un), where un = bn + an

Therefore un = tn for all n, so (an) + (bn) = (bn) + (an).
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The associative law for addition is similar. The commutative law for multiplication

follows from:

(an)(bn) = (tn), where tn = anb0 + · · ·+ a0bn

(bn)(an) = (un), where un = bna0 + · · ·+ b0an

Therefore un = tn for all n, so (an)(bn) = (bn)(an).

The remaining laws can be checked in the same manner.

Next, observe that

θ(k + l) = (k + l, 0, 0, . . .)

= (k, 0, 0, . . .) + (l, 0, 0, . . .)

= θ(k) + θ(l)

θ(kl) = (kl, 0, 0, . . .)

= (k, 0, 0, . . .)(l, 0, 0, . . .)

= θ(k)θ(l)

Finally, θ(k) = 0 if and only if (k, 0, 0, . . .) = (0, 0, 0, . . .), which is true if and only if

k = 0. Therefore θ is an isomorphism between C and θ(C).
Identify a ∈ C with θ(a), and let t = (0, 1, 0, . . .). Then t2 = (0, 0, 1, 0, . . .), t3 =

(0, 0, 0, 1, . . .), and inductively

tN = (0, . . . , 0︸ ︷︷ ︸
N

, 1, 0, . . .)

for all N ∈ N. Therefore

a0 + a1t+ · · ·+ aN t
N = (a0, a1, . . . aN , 0, . . .) = (an)

since an = 0 for n > N .

2.3 Use similar calculations but express them in the standard notation a0+a1t+· · ·+aN t
N

for polynomials.

2.4 Let f(t) = t+ 1, g(t) = −t. Then ∂f = ∂g = 1, but ∂(f + g) = 0.

2.5* Follow the hint. Consider the zj as independent indeterminates over C. Then D is

a polynomial in the zj of total degree 0+ 1+ 2+ · · ·+ (n− 1) = 1
2
n(n− 1). Moreover, D

vanishes whenever zj = zk for all j �= k, and these linear polynomials have no common

factor, so D is divisible by
∏

j<k(zj − zk).

The total degree in the zj of this product is also 1
2
n(n−1). Therefore

∏
j<k(zj −zk) =

kD where k ∈ C. The main diagonal of D contributes a term 1.z2.z
2
3 · · · zn−1

n to D. Group

the factors of
∏

j<k(zj − zk) as:

(z1 − z2)×
(z1 − z3)(z2 − z3)×
(z1 − z4)(z2 − z4)(z3 − z4)×
· · ·
(z1 − zn)(z2 − zn) · · · (zn−1 − zn)
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The coefficient of 1.z2.z
2
3 · · · zn−1

n is clearly 1.(−1).1.(−1). . . ., where there are n−1 factors.

So this product equals (−1)−n(n+1)/2. Putting it all together,

D = (−1)−n(n+1)/2
∏
j<k

(zj − zk)

2.6 Suppose that f(t) = a0 + a1t + · · · + ant
n and f(t) = 0 for all t ∈ C. Substitute

t = 1, 2, 3, . . . to get

a0 + a1 + · · ·+ an = 0

a0 + 2a1 + · · ·+ 2nan = 0

a0 + 3a1 + · · ·+ 3nan = 0

. . .

a0 + na1 + · · ·+ nnan = 0

Consider this as a system of n linear equations in n unknowns aj. The determinant is
∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

1 2 4 · · · 2n

1 3 9 · · · 3n

...
...

...
. . .

...

1 n n2 · · · nn

∣∣∣∣∣∣∣∣∣∣∣
which is nonzero by Exercise 2.5. Therefore all aj = 0.

2.7 Let f(t) = t3 + pt2 + qt+ r where p, q, r ∈ R. (Without loss of generality the leading

coefficient is 1.) There exists M > 0 such that

t < −M =⇒ f(t) < 0

t > M =⇒ f(t) > 0

Since f is continuous, the Intermediate Value Theorem implies that f(a) = 0 for some

a ∈ (−M,M). Therefore f(t) = (t − a)(t2 + αt + β) for some α, β ∈ R. Now use the

quadratic formula to write t2 + αt+ β = (t− b)(t− c) for b, c ∈ C.
2.8* There are at least two ways to answer this question.

(a) Use Cardano’s formula to find at east one complex root, and then argue as in the

real case by factoring out that root to get a quadratic. (Or use Cardano’s formula to

find three complex roots.) You will need to prove that every complex number has a cube

root. This can be done using DeMoivre’s Formula

(r(cos θ + i sin θ))3 = r3(cos 3θ + i sin 3θ)

or equivalently

3
√

r(cos θ + i sin θ) = 3
√
r

(
cos

θ

3
+ i sin

θ

3

)

(b) The second, which probably resembles what Euler had in mind, is to analyse the

curves in the plane defined by the vanishing of the real and imaginary parts of the cubic.

Where the curves cross, we obtain a root.
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We sketch the method, which is topological. Intuitively plausible features of the

geometry will not be verified here. (I am not claiming that these verifications are trivial!)

By scaling z to make the polynomial have leading coefficient 1, and using a Tschirnhaus

transformation to remove the quadratic term, we can without loss of generality start with

f(z) = z3 + pz + q where p, q ∈ C. Define z = x+ iy, so that

z2 = (x2 − y2) + 2ixy

z3 = (x3 − 3xy2) + i(3x2y − y3)

Let

p = a+ ib q = c+ id

Then

g(x, y) = Ref(z) = x3 − 3xy2 + ax− by + c

h(x, y) = Imf(z) = 3x2y − y3 + bx+ ay + d

and we want to prove that the curves

R = {(x, y) : g(x, y) = 0} I = {(x, y) : h(x, y) = 0}

in R2 must intersect. Any such intersection point corresponds to a zero (x, y) of f .

Figure 3: Asymptotic form of the curves.

If |z|2 = x2 + y2 is very large, then the behaviour of g and g is dominated by their

highest order terms, the cubic terms ĝ(x, y) = x3 − 3xy2 and ĥ(x, y) = 3x2y− y3. So the

curve R is asymptotic to the curve

R̂ = {(x, y) : ĝ(x, y) = 0}

which consists of three straight lines through the origin: x = 0, x =
√
3y, and x = −

√
3y,

shown by the solid lines in Figure 3. Similarly the curve I is asymptotic to the curve

Î = {(x, y) : ĥ(x, y) = 0}

which consists of the three dotted lines in Figure 3.
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Figure 4: Curves defined by real (left) and imaginary (centre) parts of cubic polynomial. When they

are superposed (right) it can be seen that they meet in 3 points.

Each of these sets of lines cuts any circle C in 6 points, which alternate between R̂

and Î round the circle (black and white dots).

If the circle is large enough, we can drop the hats: R meets C in 6 points very close

to those to R̂, and I meets C in 6 points very close to those to Î. Figure 4 shows a

typical case. Here a = 20, b = 10, c = −80, d = 12. The curves R, I meet in three points,

corresponding to the three zeros.

We claim that whatever the values of a, b, c, d may be, the corresponding curves R, I

must have at least one point of intersection. The argument is topological.

By general properties of two-variable polynomial equations, R consists of a finite set

of continuous curves, each of which joins two of the associated 6 points, plus (perhaps)

other isolated curves inside the circle C. These curves can cross each other, and may have

cusp points, but the important property is continuity. Ignore any isolated close curves

inside C, and consider one of the curves that constitute R. Call this A. It must join

some two of the six black dots, and there are three possibilities, shown in Figure 5.

Figure 5: Topology of the intersections.

The curve A divides the interior of the circle C into two regions, one of which contains

either 1, 2,or 3 white dots. If the number is odd (1 or 3) then at least one dotted

12
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curve emanating from one of these dots does not terminate at the other,and hence must

intersect A. If the number is even (hence 2) then those two white dots are joined by a

curve B. Either B meets A, or it is entirely contained inside the region cut off by A. In

the latter case, there is a single black dot inside the region cut off by B, and the curve

emanating from that dot must meet B.

Therefore R and I must intersect in at least one point (x, y) ∈ R2 ≡ C, and this point

gives a zero x+ iy of f .

2.9 (a) F. (b) F. (c) F. (d) F. (e) T. (f) F.

3 Factorisation of Polynomials

3.1

(a) q = t4 − 7t+ 1, r = 49t+ 12.

(b) q = 1, r = 1.

(c) q = 2t2 − 27
2
t+ 137

4
, r = −697

4
.

(d) q = t2 − 1, r = 0.

(e) q = 1
3
t2 − 1

3
t+ 1

3
, r = −t− 1.

3.2 (a) 1. (b) 1. (c) 1. (d) t2 + 1. (e) t+ 1.

3.3 (a)

a =
2401

821825
t6 − 588

821825
t5 +

144

821825
t4 − 16807

821825
t3 +

343

164363
t2 − 84

164363
t++

23501

164363

b = − 2401

821815
t2 +

588

821815
t− 144

821815

(b)

a = 1 b = −1

(c)

a = − 4

697
b =

8

697
t2 − 54

697
t+

137

697

(d)

a = 1 b = 0

(e)

a = 1 b = −1

3
t2 +

1

3
t− 1

3

3.4 (a) Reducible since t4+1 = (t2+1)2− 2t2 = (t2+1)2− (
√
2t)2 = (t2+

√
2t+1)(t2−√

2t+ 1).

(b) Irreducible since the two quadratics t2 ±
√
2t+ 1 have no rational zeros. (If they

did,
√
2 would be rational.)

(c) Irreducible by Eisenstein’s Criterion with p = 11.

(d) t3 + t2 + t+ 1 = t2(t+ 1) + (t+ 1) = (t2 + 1)(t+ 1), hence reducible.

(e) t3 − 7t2 + 3t = 3 vanishes when t = 1, so t− 1 is a factor. Reducible.
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