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Chapter 2 Solutions
Section 2.1

1. Some possibilities:

(a) an = la+b+ (=1)"(b—a)]/2.
() a, = [a+b+ (=1)L+D/2 (b — a)] /2,
an = [a+b+ (a—b)[sin(nm/2) — cos(nm/2)] /2.

(¢) an =[a+b+ (=1)L=D/3)(q —b))/2.
(d) an = 3(b+c—2a)z2 + 1(b— )z, + a, z, :=sin [(n — 1)7/2].
(€) an =3+ (~DL/2) 4 [(1)r —1)/2.

.1 =a,rx,=a+b—x, 1,n>1.

. (a) Since |(4n—1)/(2n+7) — 2| = 15/(2n+7) < 8/n, choose any integer

N > 8/e.
(b) If n > 6, |(2n% —n)/(n? +3) — 2| = |n + 6|/(n? + 3) < 2n/n? = 2/n.
Therefore, choose N > min{6,2/¢}.

(c) |(5v/n+7)/(3v/n+2) —5/3] = 11/(9v/n + 6) < 11//n, so choose

any integer N > (11/¢)2.

(d) Forn > 2, (n—1)/(v/n+1) > (n/2)/2y/n = \/n/4, so choose any
integer N > 16M2.

() [(2+1/n)3 =8| =[(2+1/n)? +2(2+1/n) + 4] /n < 19/n, so choose
any integer N > 19/e.

(f) nt2 1 1 <1 so choose any intege
1/ —-1= = ny integer
n+1 Vn+1(Vn+2+vn+1) ~ n’ y e
N >1/e.

. The disjoint intervals (—3/2,—1/2) and (1/2,3/2) each contain infinitely

many terms of the sequence. Therefore, no limit can exist.

. Letr=pq~t, p, g € Z, ¢ > 0. For all n > ¢, nlr € Z hence sin(nlrr) = 0.

. The general term in the sequence may be written n?~*(1 +n~2)?, which

tendsto 1if p=1,0if p < 1, and +o0 if p > 1.

. Let A={xz,...,zp} and A; = {n : a,, = ;}. One of these sets, say Ay,

must have infinitely many members. Since |21 — a| < |21 — a,| + |ayn, — a
and a,, — a, letting n — +o00 through A; shows that 1 = a. We may
therefore choose € > 0 so that I := (a — ¢, a+¢) contains no x; for j > 2.
Let N € N such that a,, € I for all n > N. For such n, a,, = a.
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10.
11.
12.

13.

14.

15.

(a) by, = (3an + 2b, — 3ay)/2 — (¢ — 3a)/2.
(b) Let ¢, = 3anby, + 5a2 — 2b,,. Then

by = (cn — 5a2)/(3a, —2) — (1 —20)/(6 —2) = —19/4.
(a) 2. (b) Va/b. (c) k/2. (d)b/2v/a. (e) 1. (f) 1/2a. (g) —ka*'.
(h) a/k. (i) 0. (§j) 0. (k) 1/2. (1) 1.
If |a,| < M for all n, then |apb,| < M|b,| — 0.
Use —r <a, — b, <rand 2.1.4.
Vna, = (na,)(1/y/n) = a-0=0.

If a = 0, given € > 0 choose N such that a, < eb for all n > N
Suppose a > 0. Then there exists N such that a, > 0 for all n > N. By
Exercise 1.4.15,

k —1
ol = 0t = =l (3o} )

j=1
since the expression inside the parentheses tends to
k
Zalfj/ka(jfl)/k = ka'~Vk > 0.
j=1
Therefore, a}/k — ql/k,

(a) Suppose first that r > 1. Set h,, = r'/" — 1. Then h,, > 0, and by
the binomial theorem, r = (1 4+ h,,)™ > nh,. Therefore, by the squeeze
principle, h, — 0. If » < 1 consider 1/r.

(b) Set h,, = n'/™ —1. Then n = (1+h,,)" > n(n—1)h2 /2, hence h,, — 0.

(¢) Set h,, = (r +n*)Y/™ — 1. By the binomial theorem, for n > k

nn—1)---(n— k)h’fLJ“l (n— k)’”lhlffl
(k+ 1)! (k+1)! ’

r+nf = (1+h,)" >

hence h,, — 0.

(d) Use the inequality 2z/7 < sinz < z, 0 < z < 7/2, and the squeeze
principle.

Follows from the identities x = 2+ — 2™, 27 = (Jz| + x)/2, and z~ =

(|2 = z)/2.
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16.

17.

18.

Let s = 1/|r| and h = s — 1. By the binomial theorem,

s"=(h+1)" = kzijo (Z) hE.

Since s > 1, each term in the sum is positive hence, for n > m,

s" > n herl _ n(n B 1) co (n B m) herl > (n B m)m+1 hm+1
m+1 (m+ 1)! (m+1)!
Therefore,
m m 1 ' 1 !
R P h S R LS

5™ (n —m)m+ipm+l  p(1 — m/p)mtipm+l’

Since the term on the right tends to 0 as n — +00, the squeeze principle
implies that n™r™ — 0.

a" < Tapn_1 < r2au_o9 < -+ < " lay — 0. For the example, take
a, = 24/

n= .
Suppose first that a € R. Given € > 0, choose N such that |a, —a| < £/2

for all n > N. For such n,

(a1 —a)+---+(any —a)

a1+...+ana‘§

n n
v @)+t (a0
n
(1 —a)+---+(anv—a)| n—Ne¢e
- n n 2

The second term on the right in the last inequality is less than /2. Also,
there exists N’ > N such that the first term is less than /2 for all
n > N'. For such n, |[(a1 + - a,)/n —a| <e.

Now suppose a,, — +o0o. Let M > 0 and choose N such that a,, > 4M
for all n > N. For such n,

a1+...+ania1+...+a]\] aN+1+...+an

+
n n n
> a+---+an +4(n—N)M
n n
Choose N’ > N such that

_N 1

n > = and M>_M
n 2 n

for all n > N’. For such n, (a1 +---+an)/n >2M — M = M.

The converse is false: consider a,, = (—1)".
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19.

20.

21.

22.

23.

Choose N such that a,, — a < ¢ for all n > N. For such n,
0 < min{ay,...,ant —a<a, —a<e.

Therefore, min{ay,...,a,} — a. The converse is false: consider a,, =
1+ (=1)"
Given € > 0, choose N such that |a,|/n < ¢ for all n > N. Then

-1

by :=n~ max{ai,...,a,} = max{ay,, Bn},

where

1

an =n'max{ai,...,an}, Bn=n""

max{aN{1,...,0an}

Choose N’ > N such that |a,| < € for all n > N’. For such n we also
have —e < 3, < ¢, hence —e < b, < €.

If {a,} is bounded below by ¢ then
¢/n < ap/n < max{ay,...,an}/n.

Hence if (1/n)max{ai,...,a,} — 0, then a,/n — 0. The example
an, = 1 —n shows that the converse is not generally true.

(@ + -+ )/ = 2 (21 J2)" + -+ (@ros/2)" + 1] and

1< [(:ﬁ/xk)"_’_..,_'_ (2p—1/3)" _i_ﬂl/n < EU/n o q.

Suppose that ¢ < f(z) —a < d for all z, so ¢+ jax < f(jz) < djz.

Summing and using Exercise 1.5.4,

nc+azn(n+1)/2 < Enzf(]x) <nd+zn(n+1)/2
j=1

hence
c/n+z(1+1/n)/2 < (1/n?) if (jz) <d/mn+z(1+1/n)/2.
j=1

Letting n — 400, we obtain (a). Part (b) is proved similarly.

a n
Let ¢ = a1 /ap and r = —1/2. By induction, = = ¢ hence

an

an+1 a1 - _ 1/3 2/3
Unt1 = ( — ) () ag = agc T S a0 = o/ P2
(7% ag
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24. Given € > 0 choose N such that |a,+x — an, —¢| < e for all n > N. Let

n > N +k and choose q,, 7, € Z such that n— N = g k+71,,0 <7, <k
(division algorithm). Then ¢, = k~'(n — N —r,,) — +o00 and
an
Un = nC= Z (@n—Gi-1)k = @njk =€) + Ang,k
j=1

Since n — jk > n — g,k > N, the terms of the sum have absolute value
less than €. Thus for all large n,

an
— —c
dn

SO Gp/qn — ¢. Since an/n = (an/qn)(qn/n) and g, /n — 1, an/n — c.

n—qnk AN +r,,

=&+

dn dn

1 a
= 7|an _an| <&+
qn

Section 2.2

1. Since Y Y
a’™ U n(nt) Un(mery _ 0"
g/ @ <1<b =yt
a'/™ is increasing and b'/" is decreasing. Each tends to 1 by Exer-

cise 2.1.14.

. Since a < 1, a1 /(n+1)¥ < a™/nk. For large n, b > (n+1)¥/n*, hence

B/ (n + 1)F > b7 /nk

. By results of Section 2.1,

an =a(l/n+nb)"t -0 and na, =a(l/n®+b)~" = ab~t.

The condition a,.1 < a, is equivalent to (n? 4+ n)b > 1, which holds
eventually. Similarly, (n + 1)an41 > na, is equivalent to the inequality
(n+1)2 > n

(@)Y =, (2 ) 4+ (T fzn)™ + 1] n o

1/n

1< [(wl/xn)"+---—l—(mn_l/xn)"—i—l} <npl/n 1.

. Let r,, be any strictly increasing sequence converging to sup A. By the

approximation property, there exists a; € A with r; < a1 < sup A,
as € A with ro < as <sup A4 and as > aq, etc. In this way we obtain a
sequence a1 < as < --- converging to sup A.

. Suppose a,, is increasing. Then

a1+...+an+1 a1+...+an
b1 = bn = n+1 a n

n(ar + - +api1) — (n+1)(a1 + - +an)
nn+1)
N1 — (a1 + -+ ap)

= > 0.
nn+1) -
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7. Let f(z) =

10.

14 1 3z +4
2+ (142z)"t  20+3
increasing and f(am) = am42. Since ay, az € [1,2], a, € [1,2] for all n.

Since a; = 1, as = 3/2, az = 7/5 and a4 = 17/12, the inequalities

Then f : [1,2] — [1,2], [ is

Aony2 < A2p and Aop41 > A2n—1

hold for n = 1. Assume they hold for n = k. Then

agkt+a = f(a2ky2) < f(agk) = azkye and
agky3 = fla2pt1) > flagk—1) = azrs1

hence the inequalities hold for n = k + 1.

Since the sequences {ag,} and {ag,+1} are bounded and monotone,
the monotone convergence theorem implies that as, — a and as,11 — b
for some a, b € R. Letting n — +00 in f(ag,) = agny2 gives f(a) = a.
Therefore, a = /2. Similarly, b = V2. Therefore, a,, — v/2.

ca =1+ T > VT = ao, and if an > ay then

an+1:an:\/r+an>\/r+an—l>an

Therefore, by induction, {a,} is strictly increasing. Also, ag < /7 + 1,
and if a,, < \/r + 1 then

a1 =Vr+an <\Jr+Vr+1<yVr+1

Therefore, {a,} is bounded above by /7 + 1. By the monotone con-
vergence theorem, a,, — a for some a € R. Letting n — +oo in
@y = /T +an_1 produces a = +/r+ a, which has positive solution
a=(1+V1+4r)/2.

. For z >0, 22 + r > 22/ hence (z +r/x)/2 > \/r. Therefore, a,, > /7.

For x > /r, 2> + r < 222 hence (z + r/x)/2 < x. Therefore, a,, > a,41.
By the monotone convergence theorem, a,, — a for some a > /7. Letting
n — +oo in a, = (ap—1 + r/an—1)/2, yields a = (a + r/a)/2, which has
positive solution a = /7.

Let a, := (1 —1/n?)" = (1 — 1/n)(1 + 1/n). By Bernoulli’s inequality,
1-1/n <a, <1,hencea,, - landso (1-1/n)" = a,/(14+1/n)" — 1/e.

Alternatively,

e b b e

which tends to e.
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11. Let x, y > 0. Since (x — y)? > 0, /7y < (z + y)/2, with strict equality
holding iff « # y. Also, 0 < z < y implies \/zy > = and (z +¥y)/2 < y.

Now let P, be the statement 0 < x, < Zpt+1 < Ynt1 < Yn. From
the above discussion, Py is true, and P,, implies P, ;1. Therefore, the
sequences {z,} and {y,} are monotone and bounded. Let z,, T z and
Yn 1y, 50 0 < x <y. Letting n — +00 in

i1 = s (= (@0 +90)/2 = VB ) = (Vi = Vam) /2

yields
(VI +v2) (VI - V) =y — 2= (Vi - V3)"/2.

It follows that y = x.

Section 2.3
1. (a) 0, £3/8. (b) 0, £1. +2. (c) £4, £6, £12, +14. (d) 0, 3, £1.
2. For example, 1,2,3,1,1,2,3,2,1,2,3,3,...,1,2,3,n,....
3. (a) el/k. (b) e. (c) 0 (k> 2). (d) eF/2. (e) €7/3.

For example, for (d)

1 2n+k 1 —k
2k = (1 1 —e.
n ( +2n—|—k> ( +2n—|—k> ‘

4. By Bolzano-Weierstrass, there exists a convergent subsequence {a,, } of
{an}. Similarly, there exists a convergent subsequence {bnkj} of {bn, }.

5. If {a, } lies in the set {1, ..., 2, }, then one of the sets {n : a, = ;} must
have infinitely many members and a subsequence may be constructed
from these.

6. Let {r,} be any strictly increasing sequence with limit r. Choose ny such
that a,, > r1, no > ng such that a,, > max{re,a,, }, and in general
choose ny, > ni_1 such that a,, > max{rg,an,_,}-

7. We may assume that a,, — a € R (otherwise take a subsequence). Either
ay, < a for infinitely many n or a,, > a for infinitely many n. Assume the
former. Choose n; such that a,, < a. Since there are infinitely many n
for which a,, < a, < a, we may choose ng > ny such that a,, < an, < a,
ete.

8. Given € > 0, choose N so that > \ |antr — an| < e. For m >n > N,
|amk - ank| < |amk - a(m—l)k' +oeeet |a(n+l)k - ank| <e.

Therefore, {an;}52, is Cauchy.
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9. |ant1 — an| = |an — an—1]/2 = -+ = |a1 — ap|/2™ hence for m > n

oo
lam — an| < |am — am-1]+ -+ |ant1 — an| < a1z — ag| Z2‘k.
k=n

Since the series converges, {a,} is Cauchy.

10. Clearly a, — 0 implies b,, — 0. For the converse, note that
1

b= ———— <al

— — n-*
an? +ah ™!

If 0 < g < p, then the sufficiency is false: Take a, = n, ¢ = 1/2 and
p=1. Then b, = y/n/(n+1) — 0 but a,, — +oc0.

11. For x € I, choose n; such that a,, € (x — 1,2 + 1), then choose ny > n4
such that a,, € (x —1/2,2+1/2), and in general choose nj > ni_1 such
that a,, € (x —1/k,z + 1/k). Then a,, — z.

For the example, take {a,} to be an enumeration of the rationals.

12. First, choose a subsequence {b,,, } such that |b,,, —b| < 1/k. Then
choose ny such that |a,, —bm, | < 1, ne > ny such that |a,, —bm,| < 1/2,
and in general choose ny > ni_1 such that |a,, — by, | < 1/k. Then
|an, —b] <2/k for all k so a,, — b.

Section 2.4
1. (a) liminf, = —5/3, limsup,, = 5/3.

(b) liminf, =0, limsup,, = +o0.
(¢) liminf, = —14, limsup,, = 14.
(d) liminf, =1, limsup,, = 4.
(e) liminf,, =z +y — z, limsup,, = -z + y + 2.
(f) liminf, = ar?/(1 —r), limsup,, = ar/(1 — 7).
(g) liminf,, =0, limsup,, = +oo.
(h) liminf, = —oo, limsup,, = +oc.
2. (b) and (c): a, = (=1)", b, = (=1)""1;

(f) and (g): ap =2+ (-1)™ b, =2—(-1)".
3. Follows from Exercise 1.4.6.
4. Follows from Exercise 1.4.6.

5. Follows from {a,, : k> n} C {ar : k>n}.
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10.

11.

O<b—e<b,<bte=a,+b—c<a,+b,<a,+b+ec=

b— e+ limsupa, <limsup(a, +b,) < b+ e+ limsupa,.

n—oo n—oo n—roo

Now let ¢ — 0.

0<b—e<b, <bt+e=anb—c) <apb, <an(b+e)=

b — ¢)limsup a, < limsupapb, < (b+ ) limsup a,,.
n n n

Now let ¢ — 0.

If an, — @:=limsup,, an, then |a,, | — [@|. Therefore, |a| is a limit point
of |a,| and the result follows from 2.4.2. The sequence a,, = (=1)" — 1
shows that the inequalities may be strict.

For each N choose K so that {1,..., N -1} C{n; : 1<k < K -1}

Then k£ > K = n; > N hence

limsup a,, < sup ap, < sup ay.
k E>K n>N

Letting N — 400 yields lim sup,, a,, < limsup,, a,. A similar argument
verifies the reverse inequality.

Choose r so that liminf, b, > r > 0. Then, given € > 0, there exists NV
such that a,, > a/2 and b, > r, and

cn = (bn — 3ay)(by + 2a,) = bi — anb, — Ga% <e

for every n > N. Then b, — 3a, = ¢,/(bn + 2a,) < &/(r + a), so
lim sup,, b, < 3a.

We prove only the limsup inequality. Clearly, we may assume that
¢ := limsup,, a, < +00. Let b, = a,, — £. Then limsup,, b, = 0 and we
must verify that
1 n
lim sup — b; <0.
sty 0

j=1

Let € > 0 and choose k such that sup,,~ b, < e. Then

k n
1 & 1 1
Hmsup—g b»glimsupfg b; + lim sup — E b;
no oni= no oni noom =
J J j=k+1
n—=k

< lim sup e=¢e.
n

Since € was arbitrary, (1) holds.
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12. Suppose that liminf,, ar

a
/ "1 Choose strictly between

" < liminf,,

n
these numbers and then choose N such that a,/a,—1 > r for all n > N.

For such n,

U > Ao 1T > Ap_or> > - > ayr™ VN,

hence

lim inf a}/” > lim inf(a%nrl_N/") =r,
n n

a contradiction. To evaluate lim,, n/(n!)'/™ take a,, = n"/n! and calculate

n 1"
a+1<n+ > —e.

an, n
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