
Biosignals

Types of Signals

• Digital signals can be classified into major subgroups:
linear and nonlinear. Linear signals derive from linear
processes while nonlinear signals arise from nonlinear
processes such as chaotic or turbulent systems.

• These two signal classes can be further divided into
stationary and nonstationary signals. Stationary
signals have consistent statistical properties over the
data set being analyzed.

• Applicable analytical tools depend on the signal that is
being used.

Signal Encoding

• All signals involve some type of encoding scheme.

• Most encoding strategies can be divided into two broad
categories or domains: continuous and discrete.

• Continuous signals usually encode information in terms of
signal amplitude (the intensity of the signal, voltage, or
current values) as a function of time.

• For example, the temperature in a room can be encoded
so that 0 volts represents 0.0 oC, 5 volts represents 10 oC,
10 volts represents 20 oC, and so on. If linear, the
encoding equation would be:

voltage amplitude = temperature/2 volts

Linear Signals

• The equation in the last slide relates the input
(temperature) to the output (voltage) following the classic
linear relationship:

y = mx + b

where m is the slope of the input-output relationship and
b is the offset which in this case is 0.0.

• The temperature can be found from the voltage output of
the transducer as:

temperature = 2* voltage oC

• When the information is encoded in terms of signal
amplitude, it is known as an analog signal.

Linearity

• The concept of linearity has a rigorous definition, but the
basic concept is one of proportionality. If you double the
input into a linear system, you will double the output.

• One way of stating this proportionality property
mathematically is: if the independent variables of linear
function are multiplied by a constant, k, the output of the
function is simply multiplied by k.

• If y = f(x) where f is a linear function:

)(kxfky 

Properties of Linear Signals

• If f is a linear function:

     )()()()(2121 txtxftxftxf 

dx

xdf
z

)(
• If then kz

df

xdf
k

dx

kxdf











)()(

• If  fdxz then    kzdxxfkdxkxf)()(

• Derivation and integration are linear operations.

• Systems that contain derivative and integral operators
and other linear operators produce linear signals.

Analog Signal

• Analog encoding was common in consumer electronics,
but most of these applications now use digital encoding.
(The strange resurgence of vinyl records is a notable exception.)

• Analog encoding is important to the biomedical engineer,
because most biotransducers generate analog encoded
signals.

• This book uses assumes signals are digitally encoded,
often from an analog source.

• A discussion of analog signal processing and analog-to-
digital conversion is found in Chapter 1.

Digital Signals

• A continuous analog signal after conversion to the digital
domain is represented by a series of discrete samples
(numbers) at specific points in time (see Section 1.6.2):

X[n] = x[1], x[2], x[3], ... x[n]

• Usually this series of numbers would be stored in
sequential memory locations: x[1] followed by x[2],, etc.

• In this case, the memory index number, n, relates to the
time associated with a given sample given by Eq. 1.5:

s

s
f

n
nTt 

where fs is the sample frequency.

Time Invariance

• If a system’s response characteristics do not change
over time, that is, its statistical properties are constant, it
is said to be time-invariant.

• Time invariance is a stricter version of stationarity since
a time-invariant system would also be stationary.

• Mathematically: if f is a linear function, then for time
invariance:

Note that time-invariant signals should not be confused with time-
varying, that is, signals that fluctuate in amplitude. Time-invariant
signals can still be time-varying.

 y t T f x t T() ()   

LTI Systems

• A system that is both linear and time-invariant is referred
to as a linear time-invariant (LTI) system.

• The LTI assumptions allow us to apply a powerful array
of mathematical tools known collectively as linear
systems analysis or linear signal analysis.

• Most living systems change over time, they are adaptive,
and they are often nonlinear, but the power of linear
systems analysis is sufficiently seductive that simplifying
assumptions or approximations are made so that these
tools can be used.

Causality

• A system that responds only to current and past inputs is
termed causal.

• Systems that exist in the real-world (e.g., analog
electronic filters) must be causal.

• Computer programs can operate on stored in the
computer using values that appear to be in the future
with respect to a given operation.

• Such systems are noncausal.

(Some digital filters in Chapter 4 are noncausal.)

Superposition

• Linearity is required for the application of an important
concept known as superposition.

• Superposition states that if there are two (or more) inputs
acting on a linear system, the system responds to each
as if it were the only input (i.e., the other input was not
there). The influence of multiple inputs is the summation
of each stimulus acting alone.

• This allows a “divide and conquer” approach, in which
complex stimuli can be broken down into simpler
components and an input-output analysis performed on
each sub-stimulus as if the others did not exist.

Basic Signal Measurements

Mean or average
value (discrete):

x x =
N

x avg n

n=

N

 
1

1

Mean or average
value (continuous):

   x t =
T

x t dt
T1
0

RMS (continuous):

RMS (discrete): x =
N

x rms n
n=

N1
2

1

1
2












   x t =
T

x t dt rms

T1 2

0

1
2









Example 2.1. Find the RMS value of the sinusoidal
signal using both analytical and digital approaches.

Analytical:

    

x(t) =
T

x(t) dt
T

A
t

T
 dt

T

A t

T

t

T

t

T

T

A

A

rms

T

p

T1 1 2 2

1

2

2 2

0

2
2 2 0 0

2

0

1
2

0

1
2

2
1

2

2
1

2

2

 
































 














 























   



























sin

cos sin

cos sin cos sin





  


  



2 2
0 707

1
2 2

1
2
















 

A A
A

2
.

Solution, digital: Generate a 1-cycle sine wave (Ts =
0.005 sec; N = 500; so TT, = NTs = 0.005(500) = 2.5
sec. To generate a single cycle given these parameters,
the frequency of the sine wave should be f = 1/TT = 1/2.5
= 0.4 Hz. Set the amplitude of the sine wave, A = 1.0.

N = 500; % Number of points for waveform
Ts = .005; % Sample interval = 5 msec
t = (1:N)*Ts; % Generate time vector (t = N Ts)
f = 1/(Ts*N); % Sine wave freq. for 1 cycle
A = 1; % Sine wave amplitude
x = A*sin(2*pi*f*t); % Generate sine wave
RMS = sqrt(mean(x.^2)) % Take the RMS value and output.

Results: The value produced by this program is 0.7071,

which is very close to the theoretical value of √2 times A.

Basic Signal Statistics

Variance, σ2, is a measure of signal variability similar to
RMS:

 =
N-

(x - x)n

n=

N

2 2

1

1

1
  2 =

1 2

0
T

x t - x dt

T

()







Standard deviation, σ, is the square root of variance: :

 =
1

1
2

1

1
2

N-
(x - x)n

n=

N










  =

1
21 2

0
T

x t - x dt
T

()



















MATLAB Implementation

For matrices, mean(X) is a row vector containing the
mean value of each column.

The same is true for xstd and xvar.

xm = mean(x); % Mean of x

xvar = var(x); % Variance of x normalizing by N-1

xstd = std(x); % Standard deviation of x

Example 2.2 Evaluate a signal to determine if it is
stationary. If not, attempt to modify the signal to
remove the nonstationarity, if possible.
The file data_c1.mat contains the signal in variable x.
(N = 1000 and Ts = 0.001 sec.)

Solution, Part 1: In Part 1 we want to determine if the
signal is stationary. If it is not, we will modify the signal
in Part 2 to make it approximately stationary.

One straightforward method is to segment the data
and evaluate the mean and variance of the segments.
If they are the same for all segments, the signal is
probably stationary.

If these measures change segment-to-segment, the
signal is clearly nonstationary.

% Example 2.2, Part 1. Evaluate a signal for stationarity.
%
load data_c1; % Load the data. x
for k = 1:4 % Divide into 4 segments

m = 250*(k-1) + 1; % Index of first segment sample
segment = x(m:m+249); % Extract segment
avg(k) = mean(segment); % Evaluate segment mean
variance(k) = var(segment); % and segment variance

End
%
% Output means and variance with header comments
disp('Mean Segment 1 Segment 2 Segment 3 Segment 4')
disp(avg) % Output means
disp('Variance Segment 1 Segment 2 Segment 3 Segment 4')
disp(variance) % Output variance

Results are shown in the next slide.

Segment
1

Segment 2 Segment
3

Segment
4

Mean 0.0640 0.4594 0.6047 0.8095

Var 0.1324 0.1089 0.0978 0.1021

Example 2.2 Results, Part 1, show that the signal is
nonstationary.

Solution, Part 2: One trick is to transform the signal by
taking the derivative: the difference in value between
each sample. Since only the mean is changing, another
approach is to detrend the data, that is, subtract out and
estimate the changing mean. (MATLAB’s detrend
operator can be used.)

The first approach is used here.

% Example 2.8, Part 2. Modify a nonstationary signal to become
stationary
%
y = [diff(x);0]; % Take difference between points.
for k = 1:4 % Segment signal into 4 segments

m = 250*(k-1) + 1; % Index of first segment sample
segment = y(m:m+249); % Extract segment
avg(k) = mean(segment); % Evaluate segment mean
variance(k) = var(segment); % and segment variance

end
....... Output avg and variance as above

Segment
1

Segment
2

Segment
3

Segment
4

Mean 0.0020 -0.0008 0.0004 0.0004

Variance 0.0061 0.0057 0.0071 0.0066

Results, Part 2, show the modify signals is stationary with
means near 0.0

Decibels

Decibels (dB) are units that compare the intensity of two
signals using log ratios, VSig1/VSig2. Decibels are not
really units, but a logarithmic scaling of a
dimensionless ratio.

Advantages of decibels include:
1. The log operation compresses the range of values (e.g.,

a range of 1 to 1000 becomes a range of 1 to 3 in log units);

2. When numbers or ratios are to be multiplied, they are
simply added if they are in log units;

3. The logarithmic characteristic is similar to human
perception.

P
P

P
dB 







10 2

1

log dB

Decibels (dB) Definition
• The logarithmic unit called the Bel turned out to be

inconveniently large, so it has been replaced by the
decibel: dB = 1/10 Bel.

• While originally defined only in terms of a ratio, dB
units are also used to express the power or intensity
of a single signal.

• When applied to a power measurement, the decibel
is defined as 10 times the log of the power ratio:




















2

1
2

2

1 log20log10
Sig

Sig

Sig

Sig
dB

V

V

V

V
V

   SigSigdB VVV log20log10 2 

Decibels (dB) Other Formulations

Power is usually proportional to the square of voltage.
So when a signal voltage, or voltage ratio, is being
converted to dB, Eq. 2.19 has a constant multiplier of 20
instead of 10 since log x2 = 2 log x:

For a ratio of signals; or for a single signal:

Signal-to-Noise Ratio

• The Signal-to-noise ratio or SNR is simply the ratio
of signal to noise, both measured in RMS (root-
mean-squared) amplitude. The SNR is often
expressed in dB where:

• To convert from dB scale to a linear scale:

SNR = 20 log
signal

noise









SNR = 10Linear
dB 20

SNR Example

For example and SNR of:

+20 dB means that the signal RMS is 10 times the
noise RMS (10(20/20) = 10);

+3 dB indicates a ratio of 1.414 (10(3/20) = 1.414);

0 dB means the signal and noise have the same
RMS values;

-3 dB means that the ratio is 1/1.414;

-20 db means the signal is 1/10 of the noise in

RMS units.

Example of Different SNR Levels

0 100 200 300 400 500
-100

-50

0

50

100

Time (msec.)

SNR: +10db

0 100 200 300 400 500
-50

0

50

Time (msec.)

SNR: +3db

0 100 200 300 400 500
-50

0

50

Time (msec.)

SNR: -3db

0 100 200 300 400 500
-50

0

50

Time (msec.)

SNR: -10db

A sinusoid with 4 levels of added noise. SNR’s in dB.

10 dB
+3 dB

-3 dB -10 dB

NOISE AND VARIABILITY

What is noise? Noise is what you do not want and signal is what
you do want (noise is unwanted variability). Noise often limits the
usefulness or information content of a signal.

Where does noise come from?
Table 1-3 Sources of Variability

Potential Remedy

Measurement only indirectly related to Modify overall approach

Other sources of similar energy form Noise cancellation
Transducer design

Transducer responds to other energy

Signal processing is often used to reduce the influence of noise.

Source Cause Potential Remedy

Physiological
variability

Measurement only
indirectly related to
variable of interest

Modify overall
approach

Environmental
(internal or
external)

Other sources of similar
energy form

Noise cancellation,
transducer design

Artifact Transducer responds to
other energy sources

Transducer design

Electronic Thermal or shot noise Transducer or
electronic design

Noise and Variability

What is noise? Noise is what you do not want and signal is what
you do want (noise is unwanted variability). Noise often limits the
usefulness or information content of a signal

Sources of Variability

Variability really is noise, but the word is often used to
indicate fluctuation between, as opposed to within,
measurements.

A variety of signal processing tools exist to reduce noise.

The more that is known about the characteristics of the
noise, the more powerful are the signal processing
methods that can be applied.

Noise and Variability

Noise Properties: Distribution Functions
• Since the noise is a random variable, describing it as a

function of time is not useful. Common properties used
to discuss noise include its probability distribution,
variance, and spectrum.

• While noise can take on a variety of different probability
distributions, the Central Limit Theorem implies that
most noise will have a Gaussian or normal distribution.

• The Central Limit Theorem states that when noise is
generated by a large number of independent sources, it
will have a Gaussian probability distribution regardless
of the probability distribution of the individual sources.

The distribution of
uniformly distributed
random numbers
before and after
averaging.

A) No averaging.
B) 2 averages
C) 3 averages
D) 6 averages.

After 6 averages, the
distribution of the
average is close to
Gaussian.

Gaussian Distribution: The Central Limit Theorem

Gaussian distribution: () =
-

p x
xe1

2

22 2

 
/

D

Example 2.3 Use a large data set generated by
MATLAB’S randn function (Gaussian distribution) and

determine the probability distribution. Also estimate the
probability distribution of the data produced by rand

(uniform distribution).

Solution: A histogram is a tabulation over the data set of
the number of occurrences of a given range of values.

Counts of values that fall within a given range are stored
in bins associated with that range.

The user usually decides how many bins to use.

Histograms are then plotted as counts against the range
with value on the horizontal axis and counts on the
vertical.

Bar-type plots are commonly used for plotting
histograms.

The MATLAB graphics routine hist evaluates the

histogram. It has a number of options. The most
useful calling structure for this example is:

[ht,xout] = hist(x,nu_bins);

where the inputs are data vector, x, and nu_bins is

the number of bins desired.

The outputs are the histogram vector, ht, and a
vector, xout, which gives the mean of the ranges

for the bins used. This vector is useful in scaling
the horizontal axis when plotting.

Example 2.3 Solution (cont)

This example first constructs a large (20000-point) data set of
Gaussainly distributed random numbers using randn, then uses hist
to calculate the histogram and plot the results. This procedure will be
repeated using rand to generate the data set.

% Example 2.3 Evaluation of the distribution of data produced
% by MATLAB's rand and randn functions.
%
N = 20000; % Number of data points
nu_bins = 40; % Number of bins
y = randn(1,N); % Generate random Gaussian noise
[ht,xout] = hist(y,nu_bins); % Calculate histogram
ht = ht/max(ht); % Normalize histogram to 1.0
bar(xout, ht); % Plot as bar graph

....... Label axes and title

.......Repeat for rand

Example 2.3 Solution (cont)

The vertical axis
is often labeled
“Counts,”
“Frequency,” or
“Frequency of
Occurrence.”

Example 2.3 Results: The bar graphs produced by this example are
shown to be very close to the Gaussian distribution for the randn
function and close to flat for the rand function.

20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

Relative Frequency

Spectrum of White Noise

Frequency (Hz)

Spectrum of White Noise

P
o

w
e

r
S

p
e

c
tr

u
m

Electronic Noise

Electronic noise has
energy at all
frequencies.

To give a number to
the amount of noise
present, a range of
frequencies must be
specified.

A ‘range of
frequencies’ is also
known as ‘bandwidth.’

Electronic noise is the only noise that can be definitively
described.

Spectrum of Electronic Noise

Electronic noise (cont)

• Johnson or thermal noise is produced by resistance
sources and the amount of noise generated is
related to the resistance and to the temperature (as
well as the bandwidth).

where R is the resistance in ohms, T the temperature in
degrees Kelvin, BW the range of frequencies in Hz, and k is
Boltzman’s constant (k = 1.38 x 10-23 J/OK).

• If noise current is of interest, the equation for
Johnson noise current can be obtained from the

above equation in conjunction with Ohm’s law.

V = kT R BW J 4 volts

I = kT BW R J 4 amps

Electronic Noise (cont)

• Shot noise is defined as current noise and is proportional to the
baseline current through a semiconductor junction:

• When multiple noise sources are present, their voltage or current
contributions add as the square root of the sum of the squares
(assuming independent sources): For voltages:

I = q I BWs d2 amps

V V V V VT N= + + +1
2

2
2

3
2 2...

Assuming the voltages are all uncorrelated.

Example (not in text) A 20-ma current flows through both a
diode (i.e. a semiconductor) and a 200-Ω resistor. What is the
total current noise? Assume a bandwidth of 1 MHz (1 x106 Hz)
and room temperature. (A temperature of 310 OK is often used
as room temperature, in which case 4kT = 1.7 x 10-20 J.)

Solution. Find the shot noise contributed by the diode and the
Johnson noise contributed by the resistor, then combine them.

()()i qI BW x x x amps

i kT BW R x x amps

i i i x x x amps

nd d

nR

nT nd nR

= = =

= = =

= + = + =

- - -

- -

- - -

2 2 166 10 20 10 10 815 10

4 17 10 10 200 9 2 10

6 64 10 8 46 10 8 20 10

19 3 6 8

20 6 9

2 2 15 17 8

. .

. () .

. . . -

Data Functions and Transforms

Basic measurements do not definitively describe signals.

For example, these two EEG segments have the same
mean, RMS, and variance, but are clearly different.

0 0.5 1 1.5 2 2.5 3
-3

-2

-1

0

1

2

3

Time (sec)

E
E

G

0 0.5 1 1.5 2 2.5 3
-3

-2

-1

0

1

2

3

4

Time (sec)

E
E

G

We would like some method to capture the differences
between these two (and other) signals, and preferably
to be able to quantify these differences.

Other functions (or waveforms) can be used to describe
signals and their differences.

In signal processing, functions fall into two categories:

1) Data, including waveforms and images;

2) Functions that operate on data.

Describing Signals

Transformations: Functions that Operate on
Signals

Transformations are operators that modify data.

Transformations are used to:

1.Improve data quality by removing noise as in filtering
(Chapter 4);
2.Make the data easier to interpret as with the Fourier
transform (Chapter 3); or
3.Reduce the size of the data by removing unnecessary
components as with the Wavelet transform (Chapter 7) or
principal component analysis (Chapter 9).

Transformations used here
depend on data type

Comparing Waveforms: Correlation

Correlation seeks to quantify how much one function (i.e.,
signal) is like another. (Mathematical correlation does a pretty
good job of describing similarity, but once in a while it breaks down so
that some functions that are conceptually similar, such as sine and
cosine waves, have a mathematical correlation of zero.)

All correlation-based approaches involve taking the sum
of the sample-by-sample product of the two functions:







N

n

nn

xy

yx

NyNxyxyxyxr

1

][][...]3[]3[]2[]2[]1[]1[

where rxy is used to indicate correlation and the subscripts
x and y indicate what is being correlated. Different
normalizations () can be used as described later. 



N

n

nnyx
N 1

1

A string of numbers can be thought of as a vector
in N-dimensional space: x[n] = [x1,x2, x3, …xn]

Data sequence:
x[n] = 2, 3, 2.5
represented as
a vector in 3-
dimensional
space.

Vector Representation

0

1

2

3

0
1

2
3

0

0.5

1

1.5

2

2.5

3

x(
3

)

x(2) x(1)

(2,3,2.5)

This curious
way of thinking
about a data
string does have
its uses.

The concept of thinking of a string of numbers (or signal)
as a vector is useful when comparing two signals.

If two strings are mathematically similar, their vector
representations will project on one another:

x2

x1
x1 x1

x2

x2 x2
x1

Completely
similar
θ = 0 deg.

Highly
similar

θ = small

Moderately
similar

θ = larger

Completely
different

θ = 90 deg

Shown here for only two dimensions, but generalizes to N
dimensions.

Signal Comparison using Vector Representation














































N

n
nn

NN

NN

yx

yxyxyx

y

y

y

x

x

x

yxyxofproductScalar

1

2211

2

1

2

1

...

,&


The projection of one vector on another is found by
taking the scalar product of the two vectors.* This
shows the relationship between vector projection
and correlation. The scalar product is defined as:
.

*The scalar product is also termed: the inner product, the
standard inner product, or the dot product.

Correlation and the Scalar Product

Note that the scalar product results in a single number
(i.e., a scalar), not a vector.

The scalar product can also be defined in terms of the
magnitude of the two vectors and the angle between
them:

Scalar Product – Correlation (cont)

cos,& yxyxyxofproductScalar 

where θ is the angle between the two vectors.

Projection (correlation) is an excellent way to compare
two signals or to compare a signal with a ‘probing’ or
‘test’ waveform.

In MATLAB, the scalar product is just: sum(x.*y)

Example 2.5 Find the angle between two short signals
represented as vectors. Give the angle in deg. The
signals are:

x = [1.7, 3, 2.2] and y = [2.6, 1.6, 3.2].

Since these signals are short, plot the two vector
representations in three dimensions.

Solution. Construct the two vectors and find the scalar
product using the last equation (the “angle” equation).
When multiplying the two vectors, be sure to use
MATLAB’s .* operator to implement a point-by-point
multiplication.

Example 2.5 Solution (cont)

Recall that the magnitude of a vector can be found using:

222]3[]2[]1[xxxx 














 

yx

yx

yx

yx
yxyx

,
cos

,
cos;cos, 1

Solve the “angle” dot product equation for θ:

This equation is used in the MATLAB program in
the next slide.

% Example 2.5 Find the angle between two vectors
%
x = [1.7, 3, 2.2]; % Generate the vectors
y = [2.6, 1.6, 3.2];
sp = sum(x.*y); % Take the scalar (dot) product
mag_x = sqrt(sum(x.^2)); % Calculate mag. x vector
mag_y = sqrt(sum(y.^2)); % Calculate mag. y vector
cos_theta = sp/(mag_x*mag_y); % Calculate cosine of theta
angle = acos(cos_theta); % Take the arc cosine and
angle = angle*360/(2*pi); % convert to degrees
%
% Plot in 3-D
hold on;
plot3(x(1),x(2),x(3),'k*'); % Plot x vector end point
plot3([0 x(1)],[0 x(2)],[0 x(3)]); % Plot x vector line
plot3(y(1),y(2),y(3),'k*'); % Plot y vector end point
plot3([0 y(1)],[0 y(2)],[0 y(3)]); % Plot vector y line
title(['Angle = ',num2str(angle,2),' (deg)']); % Output angle
grid on;

Example 2.5 Result: The plot representing the two
vectors is shown below.

The angle between the two vectors is calculated to be
26 deg.

If these were
signals, the
fairly small
angle would
indicate
some
correlation
between
them.

Orthogonality

• Orthogonal signals and functions are very useful in a
variety of signal processing tools.

• In common usage, “orthogonal” means perpendicular:
if two lines are orthogonal they are perpendicular.

• In vector representation, orthogonal signals would
have orthogonal vectors.

• The formal definition for orthogonal signals is that their
correlation (or scalar product) is zero:





N

n

nynx
1

0][][

• An important characteristic of signals that are
orthogonal (i.e., uncorrelated) is that when they are
combined or added together they do not interact with
one another.

• Orthogonality simplifies many calculations and some
analyses could not be done, at least not practically,
without orthogonal signals.

• Orthogonality is not limited to two signals. Whole
families of signals can be orthogonal (or orthonormal*)
and are called orthogonal or orthonormal sets.

* Orthonormal vectors are orthogonal, but also have unit length.

Orthogonality (cont)

Example 2.6 Generate a 500-point, 2-Hz sine wave and
a 4-Hz sine wave of the same length. Make TT = 1 sec.
Are these two waveforms orthogonal?

Solution. Generate the waveforms. Since N = 500 and
TT = 1 sec, Ts = TT /N = 0.002 sec.

Find the scalar product of these waveforms.

If the result is near zero the waveforms are orthogonal.

The MATLAB code is shown in the next slide.

% Example 2.6 Evaluate 2 waveform for Orthogonality.
%
Ts = 0.002; % Sample interval
N = 500; % Number of points
t = (0:N-1)*Ts; % Time vector
f1 = 2; % Frequency of sine wave 1
f2 = 4; % Frequency of sine wave 2
%
x = sin(2*pi*f1*t); % Generate sine wave 1
y = sin(2*pi*f2*t); % Generate sine wave 2
Corr = sum(x.*y); % Scalar product
disp(Corr)

Result: The correlation produced by this program is
1.9657e-014, very close to zero showing that the
waveforms are orthogonal.

This is expected, since harmonically related sines (or
cosines) are known to be orthogonal.

Basis Functions

• A transform can be thought of as a re-mapping of the
original data into something that provides more
information.

• Many transforms described here are achieved by
comparing the signal of interest with some sort of
probing function or a whole family of probing functions
termed a basis.

• Usually the basis is simpler than the signal, for
example, a sine wave or series of sine waves. (As shown
in Chapter 3, a sine wave is about as simple as a waveform gets.)

A quantitative comparison can tell you how much your
complicated signal is like a simpler basis or reference
family.

To compare a waveform with a number of functions
that form the basis requires a simple modification of
the basic correlation equation so that one of the
functions becomes a family of functions, fm[n].

Discrete Domain Comparisons





N

n

m nfnxmX
1

][][][

When the comparison is made with a family of
functions, a series of correlation values is produced,
X[m], one for each family member, m.

Comparisons in the Continuous Domain.

The same comparison can be made in the
continuous domain, where the signal and basis are
continuous time-domain functions and summation
becomes integration.






 dttftxmX m)()()(

where x(t) is a continuous signal and fm(t) is the set of
continuous basis functions.

• If the length of the basis, fm[n], is shorter than the
waveform, then the comparison can only be carried
out on a portion of x[n].

• The signal can be segmented by truncation, cutting
out the desired portion, or by multiplying the signal
by yet another function that is zero outside the
desired portion.

• A function used to segment a waveform is termed a
window function and its application is illustrated in
the next slide.

Mismatch Between Signal and
Basis Length

0 0.5 1 1.5 2 2.5 3

-1

0

1

0 0.5 1 1.5 2 2.5 3

0

0.5

1

0 0.5 1 1.5 2 2.5 3

-1

-0.5

0

0.5

1

Time (sec)

Original Waveform

Window Function

(Kaiser Window)

Windowed
waveform

Window functions
can reduce the
signal length.

Simple truncation is the
same as multiplying the
signal by a rectangular
window function.

Window Functions

][][][][
1

nWnfnxmX
N

n

m




When a window function is used, the correlation (scalar
product) becomes:

where W [n] is the window function.

It is possible to do a sliding comparison, where the shorter
function slides along the longer function and a correlation is
made at every position.

This is called crosscorrelation.

It is possible to both window and slide in one operation. This
is used in the Short-Term Fourier Transform.

Sliding Projections (Correlations)

where k is the integer that ‘slides’ waveform fm





N

n

m knfnxkmX
1

][][],[

 



N

n

m nfknWnxkmX
1

][][][],[

0 0.2 0.4 0.6 0.8 1
-1

0

1

2

Time (sec)
x
(t

)
&

 y
(t

)

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

Time (sec)

rx
y

Unlike correlation,
crosscorrelation
can be done using
signals that have
different lengths
(upper graph).

Peak correlation
values indicate
where the original
signal is most
similar to the
reference function.

Crosscorrelation (cont)

Maximum
correlation:
0.677

The probing function one member of a basis) slides along the signal of
interest: a sinusoid that continuously increases in frequency.

.325

Other Correlation Analyses:
Correlation and Covariance

Covariance computes the variance that is shared
between two (or more) waveforms.

The equation is similar to that of basic correlation
except that the means are removed from the two
waveforms and the correlation sum is normalized by
dividing by N – 1:

xy nn

N

nN
x x y y


 


1

1 1
()()

where σxy is the covariance and and
are the means of x and y.

_

x
_

y

where σx and σy are the variances and and are the
means of x and y.

_

x
_

y

Pearson Correlation Coefficient

A popular variation of the basic correlation equation
normalizes the correlation sum so that the outcome lies
between ± 1.

This correlation value, known as the Pearson correlation
coefficient, is obtained using a modification of the
covariance equation:

))((
)1(

1
122

yyxx
N

r
N

n
yx

Pearsonxy



  

Pearson Correlation Coefficient (cont)

If the means of the waveforms are removed, the Pearson
correlation coefficient can be obtained directly from the
basic correlation equation using:

 
r

r

N
xy Pearson

xy


1 1
2

2
2 

This will make the correlation value equal to +1 when the two
signals are identical and -1 if they are exact opposites.

In this text, the term “Pearson correlation coefficient” or just
“correlation coefficient” implies this normalization, while the
term “correlation” is used more generally to mean normalized
or un-normalized correlation.

0 0.2 0.4 0.6 0.8 1
-4

-3

-2

-1

0

1

2

3

Time (sec)

x
(t

)
&

 y
(t

)

Correlation: 0.75

Example 2.7 Find the Pearson correlation coefficient
between the two waveforms shown in Figure 2.14.
These waveforms are stored as variables x and y in file
Ex2_7.mat.

Solution: Load the file and find the un-normalized
correlation using the approach in Example 2.5 and
apply the last equation. Subtract the means of each
signal before correlation.

% Example 2.7 Pearson correlation coefficient between two
% waveforms.
%
load Ex2_7 % Load the signals
N = length(x); % Find N
% Subtract means and apply basic correlation
rxy = sum((x-mean(x)).*(y-mean(y)));
rxy = rxy/((N-1)*sqrt(var(x)*var(y))); % Apply last eq.
title(['Correlation: ',num2str(rxy)]); % Output correlation

Results: The Pearson correlation coefficient was found
to be 0.75 indicating similarity between the waveforms.

σ2
i,i is the variance of waveform i

σ2
i,j shows the way that

waveform i and waveform j vary
together, i.e., the covariance

Covariance Matrix: Covariances Between
Multiple Signals

When more than two signals are involved, the covariance
matrix shows the variances of each signal on the
diagonals and the covariances on the off-diagonals.

MATLAB computes the covariance matrix using:

S = cov(X); % Signal covariances

where X is a matrix that contains the various signals to
be compared in columns

S =

N
2

N
2

N,1
2

N,2
2

N, N
2

  

  

  

1 1
2

1 2
2

1

2 1
2

2 2
2

2

, , ,

, , ,





   





















Matrix of Correlations: Correlations
Between Multiple Signals

The matrix of correlations is similar to the covariance
matrix, except the values are normalized as in the
Pearson Correlation Coefficient. Hence the diagonals in
the correlation matrix would all be one.

MATLAB Computes the matrix of correlations using:

S = cov(X); % Signal covariances

where X is a matrix that contains the various signals to
be compared in columns.

R

r r r

r r r

r r r

xx
 =

N

N

N,1 N,2 N, N

1 1 1 2 1

2 1 2 2 2

, , ,

, , ,





   





















Example 2.8 Determine if a sine wave and a cosine
wave at the same frequency are orthogonal and if sine
waves at harmonically related frequencies are
orthogonal. The term “harmonically related” means that
sinusoids are related by frequencies that are multiples.
Thus the signals sin(2t), sin(4t), and sin(6t) are
harmonically related. Also determine if sawtooth and
sine waves at the same frequency are orthogonal.

Solution: Generate a 500-point, 1.0-sec time vector.
Use this time vector to generate a data matrix in which
the columns represent 1.0-, 2- and 2.5-Hz cosine and
sine waves. Apply the covariance and correlation
MATLAB routines (i.e., cov and corrcoef) and

display results.

% Example 2.8 Application of the covariance matrix to
% sinusoids that are orthogonal and a sawtooth
%
N = 1000; % Number of points
Tt = 2; % desired total time
fs = N/Tt; % Calculate sampling frequency
t = (0:N-1)/fs; % Time vector
X(:,1) = cos(2*pi*t)'; % Generate a 1 Hz cosine
X(:,2) = sin(2*pi*t)'; % Generate a 1 Hz sine
X(:,3) = cos(4*pi*t)'; % Generate a 2 Hz cosine
X(:,4) = sin(4*pi*t)'; % Generate a 1 Hz sine
%
S = cov(X) % Solve for covariance matrix
Rxx = corrcoef(X) % and matrix of correlations

Example 2.8 Results Covariance matrix, S, and
correlation matrix, Rxx. Note that sines and cosines are
not correlated, nor are sines or cosines at multiple
frequencies. Hence, they are orthogonal.

S =

0.5005 -0.0000 -0.0000 0.0000
-0.0000 0.5005 -0.0000 0.0000
-0.0000 -0.0000 0.5005 0.0000
0.0000 0.0000 0.0000 0.5005

Rxx =

1.0000 -0.0000 -0.0000 0.0000
-0.0000 1.0000 -0.0000 0.0000
-0.0000 -0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 1.0000

Crosscorrelation and Autocorrelation
• The mathematical dissimilarity between sine and cosine

is a problem when trying to determine general patterns
such as the oscillatory characteristic of a sinusoid.

• Correlating a waveform with a sine wave might lead you
to believe it does not exhibit sinusoidal behavior even if it
is a perfect cosine wave.

• One way to circumvent this miss-identification would be
to use crosscorrelation mentioned previously to asses
the correlation between the two waveforms at many
different time (or phase) shifts.

• Crosscorrelation is guaranteed to find the best match
between any two signals.

-0.5 0 0.5

-1

-0.5

0

0.5

1

Corr: 0.000

Time (sec)

Sine Shift: 0 deg.

-0.5 0 0.5

-1

-0.5

0

0.5

1

Time (sec)

Sine Shift: 45 deg.

-0.5 0 0.5

-1

-0.5

0

0.5

1

Corr: 1

Time (sec)

Sine Shift: 90 deg.

0 0.1 0.2 0.3 0.4 0.5

-1

-0.5

0

0.5

1

Time Shift (sec)

Correlation
vs Time Shift

Corr 0.71

Effect of Shifting on Correlation
Shifting one
sinusoid with
respect to
another
probes all the
possible
relative
positions.

The maximum
correlation
occurs when
the two are in
phase and is
1.0.

When the two
are out of
phase the
correlation is
─1.

Crosscorrelation (revisited)

The equation for crosscorrelation has been given
previously and is repeated here:

 r k
N

y n x n kxy

n

N

 



1

1

[] []

where k specifies the shift in samples and rxy[k] is a
series of correlations as a function of shift.

The shift is often called lags and will be ≤ ± N. If the
signals were originally time functions, the lags may be
converted to time shifts in secs.

It does not matter which function is shifted with respect
to the other, the results will be the same.

Crosscorrelation (cont)

The two waveforms need not be the same length;
however, even if one waveform is much shorter, there
will be points missing in the unshifted waveform when
the shift becomes large enough.

Missing points at the end can be added using padding
to extend a waveform’s length. This so-called “zero-
padding” is commonly used.

If correlations are done at all possible shift positions,
positive and negative, the maximum shift is the
combined length of the two data sets minus one.

where x and y are the waveforms to be crosscorrelated
and maxlags specifies the shift range as ± maxlags. If

that argument is omitted, the default maximum shift is:
length(x) + length(y) – 1.

In MATLAB, crosscorrelation could be implemented
using the routine xcorr. The most common calling

structure for this routine is:

Crosscorrelation: MATLAB Implementation

[rxy,lags] = xcorr(x,y,maxlags); % Crosscorrelation

The xcorr function is part of the Signal Processing

toolbox.

Crosscorrelation: MATLAB Implementation

A similar routine, axcor, can be found in the accessory

material. The routine has the same calling structure
except there is no option for modifying the maximum shift:
it is always length(x) + length(y) – 1.

[rxy,lags] = axcor(x,y); % Crosscorrelation

Although crosscorrelation operations usually scale by
1/N, this routine uses scaling that gives the output as
Pearson’s correlation coefficients.

Thus rxy ranges between ± 1. (Dividing the output of

xcorr by the square root of the variances of each signal will

give similar results.)

Example 2.9 File neural_data.mat contains two
waveforms, x and y, that were recorded from two

different neurons in the brain with a sampling interval of
0.2 msec.

They are believed to be separated by one or more
neuronal junctions that impart a delay to the signal.
Plot the original data, determine if they are related and, if
so, what the time delay is between them.

Solution: Take the crosscorrelation between the two
signals using axcor. Find the maximum correlation and

the time shift at which that maximum occurs.

The former will tell us if they are related and the latter the
time delay between the two nerve signals.

Example 2.9 Crosscorrelation between nerve signals
%
load neural_data.mat; % Load data
fs = 1/0.0002; % Sampling freq. (1/Ts)
t = (1:length(x))/fs; % Time vector
subplot(2,1,1);
plot(t,y,'k',t,x,':'); % Plot original data
........labels........
[rxy,lags] = axcor(x,y); % Compute crosscorrelation
subplot (2,1,2);
plot(lags/fs,rxy,'k'); % Plot crosscorrelation
[max_corr, max_shift] = max(rxy); % Find max correlation
and shift

Finding the maximum correlation is straightforward
using MATLAB’s max operator.

Finding the time at which the maximum value occurs is
a bit more complicated as shown next.

max_shift = lags(max_shift)/fs; % Convert max shift to sec
plot(max_shift,max_corr,'*k'); % Plot max correlation
disp([max_corr max_shift]) % Output delay in sec

...... labels, title, scaling.......

Example 2.9 (cont)
The max operator provides the index of the maximum
value, labeled here as max_shift.

To find the shift corresponding to this index, we need to
find the lag value at this shift: lags(max_shift).

This lag value then needs to be converted to a
corresponding time shift by dividing it by the sampling
frequency, fs.

Example 2.9 Results: The time at which the peak
occurs is indicated and is found to be 0.013 sec.
The maximum correlation is 0.45, suggesting the
two signals are related.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-0.5

0

0.5

1

Time(sec)

x
(t

)
a
n

d
 y

(t
)

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.2

0

0.2

0.4

0.6

Time (sec)

rx
y

0 2 4 6 8 10 12 14 16
-1.5

-1

-0.5

0

0.5

1

1.5
x 10

4

Time (sec)

E
E

G
Example 2.10 Take the EEG signal shown below and
compare it to a sinusoid at a given frequency.

We will do this comparison over a range of frequencies.

Since we want to compare it to a general sinusoid, not
only a sine wave, we use crosscorrelation to compare it
to shifted sine waves and take the maximum correlation.

EEG signal used in
Example 2.10.

Example 2.10 Compare the EEG signal found in file
eeg_data.mat with sinusoids ranging in frequencies

between 1.0 and 25 Hz. The sinusoidal frequencies
should be in 0.25-Hz increments.

Solution: Load the ECG signal. Use a loop to generate a
series of sine waves from 0.25 to 25 Hz. (Cosine waves
would work just as well since the crosscorrelation covers all
possible phase shifts.)

Crosscorrelate these sine waves with the EEG signal
and find the maximum crosscorrelation.

Plot this maximum correlation as a function of the sine
wave frequency.

% Example 2.10 Camparison of an EEG signal with sinusoids
%
load eeg_data; % Get EEG data
fs = 50; % Sampling frequency
t = (1:length(eeg))/fs; % Time vector
for i = 1:25

f(i) = 0.25*i; % Frequency range: 0.25-25 Hz
x = sin(2*pi*f(i)*t); % Generate sine
rxy = axcor(eeg,x); % Perform crosscorrelation
rmax(i) = max(rxy); % Store max value

end
plot(f,rmax,'k'); % Plot max values as function of freq.

Result:
The result of the multiple crosscorrelations is shown in
the next slide.

An interesting structure emerges.

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

Frequency (Hz)

M
a
x
im

u
m

 C
o
rr

e
la

tio
n

Result Example 2.10.

Some frequencies
show much higher
correlation between
the sinusoid and the
EEG.

A particularly strong
peak is seen in the
region of 7 to 9 Hz,
indicating the
presence of an
oscillatory pattern
known as the alpha
wave.

The Fourier transform is a more efficient method for obtaining the
same information as shown in Chapter 3.

Autocorrelation

• It is also possible to correlate a signal with other
segments of itself.

• This can be done by performing crosscorrelation on
two identical signals, a process called
autocorrelation.

• Autocorrelation is easy to implement in MATLAB (e.g.
axcor(x,x)), but it is harder to understand what it

signifies.

• Autocorrelation describes how long (over what time
period) a signal remains correlated with itself.

Autocorrelation (cont)

• As shift increases, the signal is compared with more
distant neighbors.

• A signal that remains correlated with itself over long
time periods must have been influenced by a system
having “memory” (it must remember past values of the signal
and use this information to shape the signal’s current values.)

• The longer the memory, the more the signal will remain
partially correlated with shifted versions of itself.

• Just as memory tends to fade over time, the
autocorrelation function usually goes to zero for large
time shifts.

Autocorrelation (cont)

To derive the autocorrelation equation, simply substitute
the same variable for x and y in the crosscorrelation
equation:





N

n
xx knxnx

N
kr

1

][][
1

][

where rxx[k] is the autocorrelation function.

The next slide shows four different time functions and
the corresponding autocorrelation functions.

0 0.2 0.4 0.6 0.8 1
-5

0

5
Time Plot

-500 0 500
-1

0

1
Autocorrelation

0 0.2 0.4 0.6 0.8 1
-5

0

5

10

-500 0 500
-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
-20

0

20

-500 0 500
-1

0

1

0 0.2 0.4 0.6 0.8 1
-5

0

5

Time(sec)

-500 0 500
-0.5

0

0.5

1

Lags (n)

Truncated sine wave

Slow time varying
signal (Narrowband
signal)

Fast time varying
signal (Broadband
signal)

Gaussian noise

Autocorrelation (cont)

• The autocorrelation of a sine wave is another
sinusoid, since the correlation varies sinusoidally
with the lag, or phase shift. (Theoretically the
autocorrelation should be a pure cosine, but because the
correlation routine adds zeros to the end of the signal in order
to compute the autocorrelation at all possible time shifts, the
cosine function decays as the shift increases.)

• A rapidly varying signal decorrelates quickly: the
correlation of neighbors falls off rapidly for even
small shifts of the signal with respect to itself. (A
rapidly varying signal has a poor memory of its past
values and is probably the product of a process with
a short memory.)

Autocorrelation (cont)

• For slowly varying signals, the correlation falls
slowly. Nonetheless, as for all signals, there is some
time shift for which the signal becomes completely
decorrelated with itself.

• For a Gaussian noise, the correlation falls to zero
instantly for all positive and negative lags. This
indicates that each signal sample is has no
correlation with neighboring (or any other) samples.

Autocorrelation (cont)

• Since shifting the waveform with respect to itself
produces the same results no matter which way the
waveform is shifted, the autocorrelation function will
be symmetrical about lag zero.

• Mathematically, the autocorrelation function is an
even function:

• The maximum value of rxx occurs at zero lag, where
the waveform is correlated with itself.

• If the autocorrelation is normalized by the variance
(common), the value at zero lag is 1.0.

r rxx xx() ()  

Autocorrelation: MATLAB Implementation

Autocorrelation in MATLAB is just a special case of
crosscorrelation.

When only a single input vector is provided, both xcorr
and axcor assume the autocorrelation function is
desired.

[rxx,lags] = axcor(x); % Autocorrelation

[rxx,lags] = xcorr(x,maxlags,’coeff’); % Autocorrelation

The ‘coeff’ option is used with xcorr routine to

indicate that the output should be normalized to 1.0 at
zero shift (i.e., lags = 0). The routine axcor does this

automatically when only a single input is given.

Autocovariance and Crosscovariance

These two operations are closely related to
autocorrelation and crosscorrelation except that the
signal means have been removed:























N

n
xx xknxxnx

N
kc

1

__

][][
1

][























N

n
xy xknxyny

N
kc

1

__

][][
1

][

Autocovariance and cross-covariance can be thought
of as measuring the memory or self-similarity of the
deviation of a signal(s) about their mean level(s).

Autocovariance

Crosscovariance

Auto and cross-covariance can be implemented using
axcor or xcorr with the data means subtracted out;

e.g.:

[cxy,lags] = axcor(x-mean(x), y-mean(x)); % Cross-covariance

Autocovariance and Crosscovariance
MATLAB Implementation

• Many physiological processes are repetitive, such as
respiration and heart rate, yet vary somewhat cycle-
to-cycle.

• Autocorrelation and autocovariance can be used to
explore this variation.

Considerable interest revolves around the heart rate
and its beat-to-beat variations. (Remember that
autocovariance will subtract the mean value of the heart rate from
the data and analyze only the variation.)

Example 2.11 uses autocovariance to examine the
variation in successive beats.

In this example, we use autocovariance, not
autocorrelation, since we are interested in the
correlation of heart rate variability, not the correlation
of heart rates per se.

Autocovariance Application

Example 2.11 Determine if there is any correlation in the
variation between the timing of successive heartbeats
under normal resting conditions.

1400 1500 1600 1700 1800 1900
0

20

40

60

80

100

120

Time (sec)

H
R
 (
b
e
a
ts
/s
e
c)

Preliminary HR

Normal heart rate
in beats/min as a
function of time.

The variability in
heart rate is
apparent.

H
e
a
rt

 R
a
te

 (
b
e
a
t/

m
in

)

Example 2.11 Solution: Load the heart rate data taken
during normal conditions.

The file Hr_pre.mat contains the variable hr_pre,

the instantaneous heart rate. However, the heart rate is
determined each time a heartbeat occurs, so it is not
evenly time-sampled. A second variable t_pre

contains the time at which each beat is sampled.

For this problem, we will determine the autocovariance
as a function of heart beat and we will not need the
time variable.

We can determine the autocovariance function using
axcor by first subtracting the mean heart rate.

% Example 2.11 Use of autocovariance to determine the
% correlation of heart rate variation between heart beats
%
load Hr_pre; % Load normal HR data
% Calculate auto-covariance
[cov_pre,lags_pre] = axcor(hr_pre - mean(hr_pre));
%
plot(lags_pre,cov_pre,'k'); hold on; % Plot results
plot([lags_pre(1) lags_pre(end)], [0 0],'k'); % Plot a zero line
axis([-30 30 -0.2 1.2]); % Limit x-axis

We plot the resulting autocovariance function and
limit the x axis to ± 30 successive beats to better
evaluate the decrease in covariance with successive
beats.

-30 -20 -10 0 10 20 30
-0.2

0

0.2

0.4

0.6

0.8

1

Lags (beats)

A
u
to

-c
o
va

ri
a

n
ce

Example 2.11 Results: The results below show that
there is correlation between adjacent heartbeats all the
way out to 10 beats.

h(t)
x(t) y(t)

y(t) = conv (x(t) h(t))

Convolution and the Impulse Response

Convolution can be thought of as a linear process
acting on a signal, x(t), to produce a modified signal,
y(t).

We will show it is also an example of sliding correlation
were one function is projected as sliding on another.

The operation of convolution is
used in linear systems theory to
calculate the output of an LTI
system to any input signal.

The Impulse Response

• The function, h(t), is known as the impulse response.
As the name implies, it is a system’s response to an
impulse input.

• An impulse input (also termed a delta function and
commonly denoted δ(t)) is a very short pulse with an
area of 1.0 (in whatever units you are using).

• In theory it is infinitely short but also of infinite
amplitude, compensating in such a manner as to keep
the area 1.0. (An infinitely short pulse is impossible, so in
practice the pulse is short enough so further shortening does
not change the basic shape of the response.)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

h
(t

)

Time (sec)

Impulse
function

δ(t)

Width → 0

Time (sec)

Impulse response h(t)A

B

0 5 10
-3

-2

-1

0

1

2

3

4

Time (sec)

x
(t

)

Any signal x(t) can
be considered to be
made up of an
infinite number of
impulse functions.

Input signal

The Impulse Function and Impulse Response

Impulse Function: Application

• If you know the system’s response to an impulse, you
can determine its response to any input simply by
dividing the input into a sequence of impulses.

• Each time slice will generate its own little impulse
response.

• The amplitude and position of this impulse response is
determined by the amplitude and position of the
associate input signal segment.

• If superposition and time invariance hold, then the
output can be determined by summing (or integrating)
the impulse responses from all input signal segments.

Each signal segment contributes its own little impulse
response to the output, scaled and shifted appropriately.

Since LTI systems are time-invariant, the time shifting
does not alter the impulse response.

• Convolution can be used to perform a summation of the
individual impulse responses.

• Convolving the input signal with the impulse response
results in the output signal from the process that
generated the impulse response.

• The convolution sum is similar to the crosscorrelation
except that one of the functions is reversed:

• Convolution is based on superposition and therefore
only applies to LTI systems.

Convolution Sum







1

0

][][][
K

k

knxkhny

When implementing convolution, we reverse the input
signal because the low-time side of the signal (the left
side) is first to enter a system.

Reversing the Signal

The input
signal, x[k],
becomes x[-k]

The Convolution Sum (cont)

Despite this similarity between the convolution sum
and crosscorrelation, the intent of the two equations is
completely different:

1. Crosscorrelation compares two functions.

2. Convolution provides the output of an LTI system
given its impulse response.

It does not matter which function is shifted, the
convolution sum can also be written as:







1

0

][*][][][][
K

k

khkxknhkxny

The ‘*’ symbol is sometimes used as shorthand for convolution
which is confusing as it usually represents multiplication.

In the continuous domain, the summation becomes
integration leading to the convolution integral:

The Convolution Integral










  dtxhdxthty)()()()()(

The next few slides provide an example of
convolution using several different sampling
intervals to show the effect.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

h
[k

]

Impulse Response

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

Time (sec)

x
[k

]

Input Signal

Assume the signal on the right is the input to a system
having the impulse response shown on the left.

The impulse or signal will be reversed as described
previously. (Here we will reverse the impulse response.)

Convolution Illustration

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

Time (sec)

y
[n

]

x[k]

h[-k]

Four
(reversed)
impulse
responses:
h[-k];

delayed and
scaled by the
input signal,
x[k].

Convolution Illustration (cont)

0 2 4 6 8 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (sec)

y
[n

]

Summed
impulse
responses

Convolution Illustration (cont)

Fifty reversed,
delayed, and
scaled
impulse
responses
(solid line).

The
summation
(dashed line)
begins to look
like the output
response.

0 1 2 3 4 5 6 7 8 9 10
-6

-4

-2

0

2

4

6

Time (sec)

y
[n

]

Actual
output
signal, y[n]

Individual
impulse
responses

Summed
impulse
responses

Convolution Illustration (cont)

150 reversed,
delayed, and
scaled impulse
responses.

The summation,
dashed line,
closely
approximate the
actual output
signal, y[n].

Convolution: MATLAB Implementation

Convolution is easy to implement in MATLAB:

y = conv(x,h); %Convolution sum

There are some options to control how many data points
are generated by the convolution, but the default produces
length(h)+length(x)-1 data points.

Usually only the first length(x) points are used and the

additional points are ignored. (There is an alternative command
for implementing convolution presented in Chapter 4 that does not
generate additional points.)

Example 2.12 Construct an array containing the impulse
response of a first-order process.

The impulse response of a first-order process is given by
the equation: h(t) = e-t/τ (scaled for unit amplitude). Assume a
sampling frequency of 500 Hz and a time constant, τ, of 1
sec.

Use convolution to find the response of this system to a
unit step input. (A unit step input jumps from 0.0 to 1.0 at t = 0.)

Plot both the impulse response and the output to the step
input signal.

Repeat this analysis for an impulse response with a time
constant of .2 sec (i.e., τ = 0.2 sec.).

Example 2.12 Solution: The most difficult part of this
problem is constructing the first-order impulse
response, the discrete function h[k].

In order to adequately represent the impulse response,
a decaying exponential, we make the function at least 5
time constants long, the equivalent of 5 sec.

Thus we need an array that is N = TT/Ts = TT (fs) =
5(500) = 2500 points.

The step function is just an array of ones 2500 points
long.

Convolving this input with the impulse response and
plotting is straightforward.

% Example 2.12 Convolution of a first-order system with a
% step
%
fs = 500; % Sample frequency
N = 2500; % Construct 5 seconds worth of data
t = (0:N-1)/fs; % Time vector 0 to 5
tau = 1; % Time constant
h = exp(-t./tau); % Construct impulse response
x = ones(1,N); % Construct step stimulus
y = conv(x,h); % Get output (convolution)
subplot(1,2,1);
plot(t,h); % Plot impulse response

.........label and title.......
subplot(1,2,2);
plot(t,y(1:N)); % Plot the step response

.........label and title.......

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

y
(t

)

Impulse Response

0 1 2 3 4 5
0

50

100

150

200

250

300

350

400

450

500

Time (sec)

y
(t

)

Step Response

Example 2.12 Results: The impulse and step
responses of a first-order system is shown below.

Note that MATLAB’s conv function generates more

additional samples (in fact, 4999 points) so only the first
2500 points are used in plotting the response.

