
Biosignals

Types of Signals

• Digital signals can be classified into major subgroups: 
linear and nonlinear. Linear signals derive from linear 
processes while nonlinear signals arise from nonlinear 
processes such as chaotic or turbulent systems.  

• These two signal classes can be further divided into 
stationary and nonstationary signals.  Stationary 
signals have consistent statistical properties over the 
data set being analyzed. 

• Applicable analytical tools depend on the signal that is 
being used.  





Signal Encoding

• All signals involve some type of encoding scheme. 

• Most encoding strategies can be divided into two broad 
categories or domains: continuous and discrete. 

• Continuous signals usually encode information in terms of 
signal amplitude (the intensity of the signal, voltage, or 
current values) as a function of time.

• For example, the temperature in a room can be encoded 
so that 0 volts represents 0.0 oC, 5 volts represents 10 oC, 
10 volts represents 20 oC, and so on. If linear, the 
encoding equation would be:

voltage amplitude = temperature/2 volts



Linear Signals

• The equation in the last slide relates the input 
(temperature) to the output (voltage) following the classic 
linear relationship:

y = mx + b

where m is the slope of the input-output relationship and 
b is the offset which in this case is 0.0.  

• The temperature can be found from the voltage output of 
the transducer as:

temperature = 2* voltage oC

• When the information is encoded in terms of signal 
amplitude, it is known as an analog signal. 



Linearity

• The concept of linearity has a rigorous definition, but the 
basic concept is one of proportionality. If you double the 
input into a linear system, you will double the output. 

• One way of stating this proportionality property 
mathematically is: if the independent variables of linear 
function are multiplied by a constant, k, the output of the 
function is simply multiplied by k.

• If y = f(x) where f is a linear function:
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Properties of Linear Signals

• If f is a linear function: 
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• Derivation and integration are linear operations.  

• Systems that contain derivative and integral operators 
and other linear operators produce linear signals. 



Analog Signal

• Analog encoding was common in consumer electronics, 
but most of these applications now use digital encoding. 
(The strange resurgence of vinyl records is a notable exception.) 

• Analog encoding is important to the biomedical engineer, 
because most biotransducers generate analog encoded 
signals.

• This book uses assumes signals are digitally encoded, 
often from an analog source.

• A discussion of analog signal processing and analog-to-
digital conversion is found in Chapter 1.



Digital Signals

• A continuous analog signal after conversion to the digital 
domain is represented by a series of discrete samples 
(numbers) at specific points in time (see Section 1.6.2): 

X[n] = x[1], x[2], x[3], ... x[n]

• Usually this series of numbers would be stored in 
sequential memory locations: x[1] followed by x[2],, etc.

• In this case, the memory index number, n, relates to the 
time associated with a given sample given by Eq. 1.5:
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where fs is the sample frequency.



Time Invariance

• If a system’s response characteristics do not change 
over time, that is, its statistical properties are constant, it 
is said to be time-invariant.

• Time invariance is a stricter version of stationarity since 
a time-invariant system would also be stationary. 

• Mathematically: if f is a linear function, then for time 
invariance:

Note that time-invariant signals should not be confused with time-
varying, that is, signals that fluctuate in amplitude.  Time-invariant 
signals can still be time-varying.   
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LTI Systems

• A system that is both linear and time-invariant is referred 
to as a linear time-invariant (LTI) system. 

• The LTI assumptions allow us to apply a powerful array 
of mathematical tools known collectively as linear 
systems analysis or linear signal analysis. 

• Most living systems change over time, they are adaptive, 
and they are often nonlinear, but the power of linear 
systems analysis is sufficiently seductive that simplifying 
assumptions or approximations are made so that these 
tools can be used. 



Causality

• A system that responds only to current and past inputs is 
termed causal.

• Systems that exist in the real-world (e.g., analog 
electronic filters) must be causal.

• Computer programs can operate on stored in the 
computer using values that appear to be in the future 
with respect to a given operation.  

• Such systems are noncausal.

(Some digital filters in Chapter 4 are noncausal.)



Superposition

• Linearity is required for the application of an important 
concept known as superposition.  

• Superposition states that if there are two (or more) inputs 
acting on a linear system, the system responds to each 
as if it were the only input (i.e., the other input was not 
there).  The influence of multiple inputs is the summation 
of each stimulus acting alone. 

• This allows a “divide and conquer” approach, in which 
complex stimuli can be broken down into simpler 
components and an input-output analysis performed on 
each sub-stimulus as if the others did not exist.  



Basic Signal Measurements
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Example 2.1. Find the RMS value of the sinusoidal 
signal using both analytical and digital approaches.

Analytical:
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Solution, digital: Generate a 1-cycle sine wave (Ts = 
0.005 sec;  N = 500; so  TT, = NTs = 0.005(500) = 2.5 
sec.  To generate a single cycle given these parameters, 
the frequency of the sine wave should be f = 1/TT = 1/2.5 
= 0.4 Hz. Set the amplitude of the sine wave, A = 1.0. 

N = 500;                   % Number of points for waveform
Ts = .005;                 % Sample interval = 5 msec
t  = (1:N)*Ts;            % Generate time vector (t = N Ts)
f = 1/(Ts*N);             % Sine wave freq. for 1 cycle
A = 1;                     % Sine wave amplitude
x = A*sin(2*pi*f*t);       % Generate sine wave
RMS = sqrt(mean(x.^2))       % Take the RMS value and output.

Results: The value produced by this program is 0.7071, 

which is very close to the theoretical value of √2  times A.



Basic Signal Statistics

Variance, σ2, is a measure of signal variability similar to 
RMS:  
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MATLAB Implementation

For matrices,  mean(X) is a row vector containing the 
mean value of each column.  

The same is true for xstd and xvar.

xm = mean(x);       % Mean of x

xvar = var(x);      % Variance of x normalizing by N-1

xstd = std(x);      % Standard deviation of x



Example 2.2 Evaluate a signal to determine if it is 
stationary. If not, attempt to modify the signal to 
remove the nonstationarity, if possible.  
The file data_c1.mat contains the signal in variable x.  
(N = 1000 and Ts = 0.001 sec.)

Solution, Part 1: In Part 1 we want to determine if the 
signal is stationary. If it is not, we will modify the signal 
in Part 2 to make it approximately stationary. 

One straightforward method is to segment the data 
and evaluate the mean and variance of the segments. 
If they are the same for all segments, the signal is 
probably stationary.  

If these measures change segment-to-segment, the 
signal is clearly nonstationary.



% Example 2.2, Part 1. Evaluate a signal for stationarity.
%
load data_c1;                   % Load the data. x
for k = 1:4                          % Divide into 4 segments

m = 250*(k-1) + 1;          % Index of first segment sample 
segment = x(m:m+249);             % Extract segment
avg(k) = mean(segment);           % Evaluate segment mean
variance(k) = var(segment);       %   and segment variance

End
%
% Output means and variance with header comments
disp('Mean   Segment 1 Segment 2 Segment 3 Segment 4') 
disp(avg) % Output means
disp('Variance Segment 1 Segment 2 Segment 3 Segment 4') 
disp(variance) % Output variance

Results are shown in the next slide. 



Segment 
1

Segment 2 Segment 
3

Segment 
4

Mean 0.0640 0.4594 0.6047 0.8095

Var 0.1324 0.1089 0.0978 0.1021

Example 2.2 Results, Part 1, show that the signal is 
nonstationary.

Solution, Part 2:  One trick is to transform the signal by 
taking the derivative: the difference in value between 
each sample.  Since only the mean is changing, another 
approach is to detrend the data, that is, subtract out and 
estimate the changing mean.  (MATLAB’s detrend
operator can be used.)

The first approach is used here. 



% Example 2.8, Part 2. Modify a nonstationary signal to become 
stationary
%
y = [diff(x);0];                           % Take difference between points.
for k = 1:4                                 % Segment signal into 4 segments

m = 250*(k-1) + 1;                % Index of first segment sample 
segment = y(m:m+249);      % Extract segment
avg(k) = mean(segment);    % Evaluate segment mean
variance(k) = var(segment); %   and segment variance

end
....... Output avg and variance as above .......

Segment 
1

Segment 
2

Segment 
3

Segment 
4 

Mean 0.0020   -0.0008    0.0004    0.0004

Variance 0.0061    0.0057    0.0071    0.0066

Results, Part 2, show the modify signals is stationary with 
means near 0.0



Decibels

Decibels (dB) are units that compare the intensity of two 
signals using log ratios, VSig1/VSig2. Decibels are not 
really units, but a logarithmic scaling of a 
dimensionless ratio. 

Advantages of decibels include:  
1. The log operation compresses the range of values (e.g., 

a range of 1 to 1000 becomes a range of 1 to 3 in log units); 

2. When numbers or ratios are to be multiplied, they are 
simply added if they are in log units; 

3. The logarithmic characteristic is similar to human 
perception. 
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Decibels (dB)  Definition
• The logarithmic unit called the Bel turned out to be 

inconveniently large, so it has been replaced by the 
decibel:  dB = 1/10 Bel. 

• While originally defined only in terms of a ratio, dB 
units are also used to express the power or intensity 
of a single signal. 

• When applied to a power measurement, the decibel 
is defined as 10 times the log of the power ratio:






















2

1
2

2

1 log20log10
Sig

Sig

Sig

Sig
dB

V

V

V

V
V

   SigSigdB VVV log20log10 2 

Decibels (dB)  Other Formulations

Power is usually proportional to the square of voltage.  
So when a signal voltage, or voltage ratio, is being 
converted to dB, Eq. 2.19 has a constant multiplier of 20 
instead of 10 since log x2 = 2 log x:

For a ratio of signals; or for a single signal:



Signal-to-Noise Ratio

• The Signal-to-noise ratio or SNR is simply the ratio 
of signal to noise, both measured in RMS (root-
mean-squared) amplitude. The SNR is often 
expressed in dB where:

• To convert from dB scale to a linear scale:

SNR =  20 log 
signal

noise
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SNR Example

For example and SNR of:

+20 dB means that the signal RMS is 10 times the 
noise RMS (10(20/20) = 10); 

+3 dB indicates a ratio of 1.414 (10(3/20) = 1.414); 

0 dB means the signal and noise have the same 
RMS values; 

-3 dB means that the ratio is 1/1.414; 

-20 db means the signal is 1/10 of the noise in 

RMS units. 



Example of Different SNR Levels 
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NOISE AND VARIABILITY

What is noise? Noise is what you do not want and signal is what 
you do want (noise is unwanted variability). Noise often limits the 
usefulness  or information content of a signal. 

Where does noise come from?
Table 1-3 Sources of Variability

Potential Remedy

Measurement only indirectly related to Modify overall approach

Other sources of similar energy form Noise cancellation
Transducer design

Transducer responds to other energy 

Signal processing is often used to reduce the influence of noise.



Source Cause Potential Remedy

Physiological 
variability

Measurement only 
indirectly related to 
variable of interest

Modify overall 
approach

Environmental           
(internal or 
external)

Other sources of similar 
energy form

Noise cancellation, 
transducer design

Artifact Transducer responds to 
other energy sources

Transducer design

Electronic Thermal or shot noise Transducer or 
electronic design

Noise and Variability

What is noise? Noise is what you do not want and signal is what 
you do want (noise is unwanted variability). Noise often limits the 
usefulness  or information content of a signal

Sources of Variability



Variability really is noise, but the word is often used to 
indicate fluctuation between, as opposed to within, 
measurements.   

A variety of signal processing tools exist to reduce noise.

The more that is known about the characteristics of the 
noise, the more powerful are the signal processing 
methods that can be applied.

Noise and Variability



Noise Properties: Distribution Functions
• Since the noise is a random variable, describing it as a 

function of time is not useful.  Common properties used 
to discuss noise include its probability distribution, 
variance, and spectrum.

• While noise can take on a variety of different probability 
distributions, the Central Limit Theorem implies that 
most noise will have a Gaussian or normal distribution. 

• The Central Limit Theorem states that when noise is 
generated by a large number of independent sources, it 
will have a Gaussian probability distribution regardless 
of the probability distribution of the individual sources. 



The distribution of 
uniformly distributed 
random numbers 
before and after 
averaging.

A) No averaging. 
B) 2 averages
C) 3 averages
D) 6 averages. 

After 6 averages, the 
distribution of the 
average is close to 
Gaussian. 

Gaussian Distribution: The Central Limit Theorem
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Example 2.3 Use a large data set generated by 
MATLAB’S randn function (Gaussian distribution) and 

determine the probability distribution. Also estimate the 
probability distribution of the data produced by rand

(uniform distribution). 

Solution:  A histogram is a tabulation over the data set of 
the number of occurrences of a given range of values.  

Counts of values that fall within a given range are stored 
in bins associated with that range. 

The user usually decides how many bins to use. 

Histograms are then plotted as counts against the range 
with value on the horizontal axis and counts on the 
vertical. 

Bar-type plots are commonly used for plotting 
histograms. 



The MATLAB graphics routine hist evaluates the 

histogram.  It has a number of options.  The most 
useful calling structure for this example is:

[ht,xout] = hist(x,nu_bins);       

where the inputs are data vector, x, and nu_bins is 

the number of bins desired.  

The outputs are the histogram vector, ht, and a 
vector, xout, which gives the mean of the ranges 

for the bins used. This vector is useful in scaling 
the horizontal axis when plotting.  

Example 2.3  Solution (cont)



This example first constructs a large (20000-point) data set of 
Gaussainly distributed random numbers using randn, then uses hist
to calculate the histogram and plot the results. This procedure will be 
repeated using rand to generate the data set.  

% Example 2.3  Evaluation of the distribution of data produced 
% by MATLAB's rand and randn functions.  
%
N = 20000;        % Number of data points
nu_bins = 40;             % Number of bins
y = randn(1,N);     % Generate random Gaussian noise
[ht,xout] = hist(y,nu_bins); % Calculate histogram
ht = ht/max(ht);        % Normalize histogram to 1.0
bar(xout, ht);             % Plot as bar graph

....... Label axes and title .......

.......Repeat for rand ........

Example 2.3  Solution (cont)



The vertical axis 
is often labeled 
“Counts,” 
“Frequency,” or 
“Frequency of 
Occurrence.” 

Example 2.3 Results: The bar graphs produced by this example are 
shown to be very close to the Gaussian distribution for the randn
function and close to flat for the rand function.
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Electronic Noise

Electronic noise has 
energy at all 
frequencies.

To give a number to 
the  amount of noise 
present, a range of 
frequencies must be 
specified.

A ‘range of 
frequencies’ is also 
known as ‘bandwidth.’ 

Electronic noise is the only noise that can be definitively 
described.

Spectrum of Electronic Noise



Electronic noise (cont)

• Johnson or thermal noise is produced by resistance 
sources and the amount of noise generated is 
related to the resistance and to the temperature (as 
well as the bandwidth).

where R is the resistance in ohms, T the temperature in 
degrees Kelvin, BW the range of frequencies in Hz, and k is 
Boltzman’s constant (k = 1.38 x 10-23 J/OK).

• If noise current is of interest, the equation for 
Johnson noise current can be obtained from the 

above equation in conjunction with Ohm’s law.

V  = kT R BW J 4  volts 

I  = kT BW R  J 4 amps



Electronic Noise (cont)

• Shot noise is defined as current noise and is proportional to the  
baseline current through a semiconductor junction:

• When multiple noise sources are present, their voltage or current  
contributions add as the square root of the sum of the squares
(assuming independent sources):  For voltages:   

I = q I BWs d2 amps

V V V V VT N= + + +1
2

2
2

3
2 2...

Assuming the voltages are all uncorrelated.



Example  (not in text) A 20-ma current flows through both a 
diode (i.e. a semiconductor) and a 200-Ω resistor.  What is the  
total current noise?  Assume a bandwidth of 1 MHz (1 x106 Hz) 
and room temperature. (A temperature of 310 OK is often used 
as  room temperature, in which case 4kT = 1.7 x 10-20 J.)

Solution. Find the shot noise contributed by the diode and the  
Johnson noise contributed by the resistor, then combine them.
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Data Functions and Transforms

Basic measurements do not definitively describe signals.

For example, these two EEG segments have the same 
mean, RMS, and variance, but are clearly different.  
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We would like some method to capture the differences 
between these two (and other) signals, and preferably 
to be able to quantify these differences.

Other functions (or waveforms) can be used to describe 
signals and their differences.

In signal processing, functions fall into two categories: 

1) Data, including waveforms and images; 

2) Functions that operate on data.  

Describing Signals



Transformations: Functions that Operate on 
Signals

Transformations are operators that modify data.  

Transformations are used to:

1.Improve data quality by removing noise as in filtering 
(Chapter 4); 
2.Make the data easier to interpret as with the Fourier 
transform (Chapter 3); or 
3.Reduce the size of the data by removing unnecessary 
components as with the Wavelet transform (Chapter 7) or 
principal component analysis (Chapter 9 ).   



Transformations used here 
depend on data type



Comparing Waveforms: Correlation

Correlation seeks to quantify how much one function (i.e., 
signal) is like another. (Mathematical correlation does a pretty 
good job of describing similarity, but once in a while it breaks down so 
that some functions that are conceptually similar, such as sine and 
cosine waves, have a mathematical correlation of zero.)  

All correlation-based approaches involve taking the sum 
of the sample-by-sample product of the two functions:
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A string of numbers can be thought of as a vector 
in N-dimensional space:  x[n] = [x1,x2, x3, …xn]

Data sequence: 
x[n] = 2, 3, 2.5
represented as 
a vector in 3-
dimensional 
space.

Vector Representation
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This curious 
way of thinking 
about a data 
string does have 
its uses.  



The concept of thinking of a string of numbers (or signal) 
as a vector is useful when comparing two signals.  

If two strings are mathematically similar, their vector 
representations will project on one another:

x2

x1
x1 x1

x2

x2 x2
x1

Completely 
similar
θ = 0 deg.

Highly 
similar

θ = small

Moderately 
similar

θ = larger

Completely 
different

θ = 90 deg

Shown here for only two dimensions, but generalizes to N
dimensions.

Signal Comparison using Vector Representation
















































N

n
nn

NN

NN

yx

yxyxyx

y

y

y

x

x

x

yxyxofproductScalar

1

2211

2

1

2

1

...

,&


The projection of one vector on another is found by 
taking the scalar product of the two vectors.*   This 
shows the relationship between vector projection 
and correlation. The scalar product is defined as:  
. 

*The scalar product is also termed: the inner product, the 
standard inner product, or the dot product.

Correlation and the Scalar Product



Note that the scalar product results in a single number 
(i.e., a scalar), not a vector. 

The scalar product can also be defined in terms of the 
magnitude of the two vectors and the angle between 
them:

Scalar Product – Correlation (cont)

cos,& yxyxyxofproductScalar 

where θ is the angle between the two vectors.

Projection (correlation) is an excellent way to compare 
two signals or to compare a signal with a ‘probing’ or 
‘test’ waveform.  

In MATLAB, the scalar product is just: sum(x.*y)



Example 2.5 Find the angle between two short signals 
represented as vectors. Give the angle in deg.  The 
signals are: 

x = [1.7, 3, 2.2]  and   y = [2.6, 1.6, 3.2]. 

Since these signals are short, plot the two vector 
representations in three dimensions.

Solution.  Construct the two vectors and find the scalar 
product using the last equation (the “angle” equation).  
When multiplying the two vectors, be sure to use 
MATLAB’s .* operator to implement a point-by-point 
multiplication.



Example 2.5 Solution (cont)

Recall that the magnitude of a vector can be found using: 
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Solve the “angle” dot product equation for θ:

This equation is used in the MATLAB program in 
the next slide. 



% Example 2.5 Find the angle between two vectors 
%
x = [1.7, 3, 2.2];                              % Generate the vectors
y = [2.6, 1.6, 3.2];
sp = sum(x.*y);                             % Take the scalar (dot) product
mag_x = sqrt(sum(x.^2));            % Calculate mag. x vector
mag_y = sqrt(sum(y.^2));            % Calculate mag. y vector
cos_theta = sp/(mag_x*mag_y); % Calculate cosine of theta
angle = acos(cos_theta);            % Take the arc cosine and 
angle = angle*360/(2*pi);             %    convert to degrees
%
% Plot in 3-D
hold on;
plot3(x(1),x(2),x(3),'k*');               % Plot x vector end point
plot3([0 x(1)],[0 x(2)],[0 x(3)]);     % Plot x vector line
plot3(y(1),y(2),y(3),'k*');               % Plot y vector end point
plot3([0 y(1)],[0 y(2)],[0 y(3)]);     % Plot vector y line
title(['Angle = ',num2str(angle,2),' (deg)']);    % Output angle
grid on;



Example 2.5 Result:  The plot representing the two 
vectors is shown below.  

The angle between the two vectors is calculated to be 
26 deg.  

If these were 
signals, the 
fairly small 
angle would 
indicate 
some 
correlation 
between 
them.  



Orthogonality

• Orthogonal signals and functions are very useful in a 
variety of signal processing tools. 

• In common usage, “orthogonal” means perpendicular:  
if two lines are orthogonal they are perpendicular.

• In vector representation, orthogonal signals would 
have orthogonal vectors.  

• The formal definition for orthogonal signals is that their 
correlation (or scalar product) is zero:
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• An important characteristic of signals that are 
orthogonal (i.e., uncorrelated) is that when they are 
combined or added together they do not interact with 
one another. 

• Orthogonality simplifies many calculations and some 
analyses could not be done, at least not practically, 
without orthogonal signals. 

• Orthogonality is not limited to two signals. Whole 
families of signals can be orthogonal (or orthonormal*) 
and are called orthogonal or orthonormal sets. 

* Orthonormal vectors are orthogonal, but also have unit length.

Orthogonality (cont)



Example 2.6 Generate a 500-point, 2-Hz sine wave and 
a 4-Hz sine wave of the same length.  Make TT = 1 sec. 
Are these two waveforms orthogonal?

Solution. Generate the waveforms. Since N = 500 and 
TT = 1 sec, Ts = TT /N = 0.002 sec. 

Find the scalar product of these waveforms.  

If the result is near zero the waveforms are orthogonal.

The MATLAB code is shown in the next slide. 



% Example 2.6 Evaluate 2 waveform for Orthogonality.
%
Ts = 0.002;             % Sample interval
N = 500;                % Number of points
t = (0:N-1)*Ts;         % Time vector
f1 = 2;                 % Frequency of sine wave 1
f2 = 4;                 % Frequency of sine wave 2
%
x = sin(2*pi*f1*t);     % Generate sine wave 1
y = sin(2*pi*f2*t);     % Generate sine wave 2
Corr = sum(x.*y);          % Scalar product
disp(Corr)

Result:  The correlation produced by this program is 
1.9657e-014, very close to zero showing that the 
waveforms are orthogonal.  

This is expected, since harmonically related sines (or 
cosines) are known to be orthogonal.   



Basis Functions

• A transform can be thought of as a re-mapping of the 
original data into something that provides more 
information. 

• Many transforms described here are achieved by 
comparing the signal of interest with some sort of 
probing function or a whole family of probing functions 
termed a basis.  

• Usually the basis is simpler than the signal, for 
example, a sine wave or series of sine waves. (As shown 
in Chapter 3, a sine wave is about as simple as a waveform gets.)



A quantitative comparison can tell you how much your 
complicated signal is like a simpler basis or reference 
family. 

To compare a waveform with a number of functions 
that form the basis requires a simple modification of 
the basic correlation equation so that one of the 
functions becomes a family of functions, fm[n].

Discrete Domain Comparisons
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When the comparison is made with a family of 
functions, a series of correlation values is produced, 
X[m], one for each family member, m.



Comparisons in the Continuous Domain. 

The same comparison can be made in the 
continuous domain, where the signal and basis are 
continuous time-domain functions and summation  
becomes integration. 
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where x(t) is a continuous signal and fm(t) is the set of 
continuous basis functions.  



• If the length of the basis, fm[n], is shorter than the 
waveform, then the comparison can only be carried 
out on a portion of x[n].  

• The signal can be segmented by truncation, cutting 
out the desired portion, or by multiplying the signal 
by yet another function that is zero outside the 
desired portion.  

• A function used to segment a waveform is termed a 
window function and its application is illustrated in 
the next slide. 

Mismatch Between Signal and 
Basis Length
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When a window function is used, the correlation (scalar 
product) becomes:

where W [n] is the window function.



It is possible to do a sliding comparison, where the shorter 
function slides along the longer function and a correlation is 
made at every position.  

This is called crosscorrelation.

It is possible to both window and slide in one operation. This 
is used in the Short-Term Fourier Transform.

Sliding Projections (Correlations)

where k is the integer that ‘slides’ waveform fm
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Unlike correlation, 
crosscorrelation 
can be done using 
signals that have 
different lengths 
(upper graph).

Peak correlation 
values indicate 
where the original 
signal is most 
similar to the 
reference function.

Crosscorrelation (cont) 

Maximum 
correlation: 
0.677

The probing function one member of a basis) slides along the signal of 
interest: a sinusoid that continuously increases in frequency. 

.325



Other Correlation Analyses:  
Correlation and Covariance

Covariance computes the variance that is shared 
between two (or more) waveforms. 

The equation is similar to that of basic correlation 
except that the means are removed from the two 
waveforms and the correlation sum is normalized by 
dividing by N – 1:  
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where σxy is the covariance and     and   
are the means of x and y.  

_

x
_

y



where σx and σy are the variances and    and    are the 
means of x and y.  
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Pearson Correlation Coefficient

A popular variation of the basic correlation equation 
normalizes the correlation sum so that the outcome lies 
between ± 1.   

This correlation value, known as the Pearson correlation 
coefficient, is obtained using a modification of the 
covariance equation:
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Pearson Correlation Coefficient (cont)

If the means of the waveforms are removed, the Pearson 
correlation coefficient can be obtained directly from the 
basic correlation equation using:
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This will make the correlation value equal to +1 when the two 
signals are identical and -1 if they are exact opposites.  

In this text, the term “Pearson correlation coefficient” or just 
“correlation coefficient” implies this normalization, while the 
term “correlation” is used more generally to mean normalized 
or un-normalized correlation. 
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Correlation: 0.75

Example 2.7 Find the Pearson correlation coefficient 
between the two waveforms shown in Figure 2.14.  
These waveforms are stored as variables x and y in file 
Ex2_7.mat.



Solution:  Load the file and find the un-normalized 
correlation using the approach in Example 2.5 and 
apply the last equation.  Subtract the means of each 
signal before correlation.  

% Example 2.7  Pearson correlation coefficient between two 
%   waveforms.
%
load Ex2_7 % Load the signals
N = length(x); % Find N
% Subtract means and apply basic correlation
rxy = sum((x-mean(x)).*(y-mean(y))); 
rxy = rxy/((N-1)*sqrt(var(x)*var(y))); % Apply last eq. 
title(['Correlation: ',num2str(rxy)]); % Output correlation

Results:  The Pearson correlation coefficient was found 
to be 0.75 indicating similarity between the waveforms. 



σ2
i,i is the variance of waveform i

σ2
i,j shows the way that 

waveform i and waveform j vary 
together, i.e., the covariance 

Covariance Matrix: Covariances Between  
Multiple Signals

When more than two signals are involved, the covariance 
matrix shows the variances of each signal on the 
diagonals and the covariances on the off-diagonals. 

MATLAB  computes the covariance matrix using: 

S = cov(X); % Signal covariances

where X is a matrix that contains the various signals to 
be compared in columns
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Matrix of Correlations: Correlations 
Between Multiple Signals

The matrix of correlations is similar to the covariance 
matrix, except the values are normalized as in the 
Pearson Correlation Coefficient. Hence the diagonals in 
the correlation matrix would all be one.

MATLAB  Computes the matrix of correlations using: 

S = cov(X); % Signal covariances

where X is a matrix that contains the various signals to 
be compared in columns.
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Example 2.8 Determine if a sine wave and a cosine 
wave at the same frequency are orthogonal and if sine 
waves at harmonically related frequencies are 
orthogonal. The term “harmonically related” means that 
sinusoids are related by frequencies that are multiples. 
Thus the signals sin(2t), sin(4t), and sin(6t) are 
harmonically related. Also determine if sawtooth and 
sine waves at the same frequency are orthogonal.

Solution: Generate a 500-point, 1.0-sec time vector. 
Use this time vector to generate a data matrix in which 
the columns represent 1.0-, 2- and 2.5-Hz cosine and 
sine waves. Apply the covariance and correlation 
MATLAB routines ( i.e., cov and corrcoef) and 

display results. 



% Example 2.8 Application of the covariance matrix to 
%  sinusoids that are orthogonal and a sawtooth  
%
N = 1000;                % Number of points
Tt = 2;                 % desired total time
fs = N/Tt;              % Calculate sampling frequency
t = (0:N-1)/fs;            % Time vector 
X(:,1) = cos(2*pi*t)';         % Generate a 1 Hz cosine
X(:,2) = sin(2*pi*t)';       % Generate a 1 Hz sine
X(:,3) = cos(4*pi*t)';         % Generate a 2 Hz cosine
X(:,4) = sin(4*pi*t)';          % Generate a 1 Hz sine
%
S = cov(X)                  % Solve for covariance matrix
Rxx = corrcoef(X)            %       and matrix of correlations



Example 2.8 Results Covariance matrix, S, and 
correlation matrix, Rxx.  Note that sines and cosines are 
not correlated, nor are sines or cosines at multiple 
frequencies. Hence, they are orthogonal.

S =

0.5005   -0.0000   -0.0000    0.0000
-0.0000    0.5005   -0.0000    0.0000
-0.0000   -0.0000    0.5005    0.0000
0.0000    0.0000    0.0000    0.5005

Rxx =

1.0000   -0.0000   -0.0000    0.0000
-0.0000    1.0000   -0.0000    0.0000
-0.0000   -0.0000    1.0000    0.0000
0.0000    0.0000    0.0000    1.0000



Crosscorrelation and Autocorrelation
• The mathematical dissimilarity between sine and cosine 

is a problem when trying to determine general patterns 
such as the oscillatory characteristic of a sinusoid.  

• Correlating a waveform with a sine wave might lead you 
to believe it does not exhibit sinusoidal behavior even if it 
is a perfect cosine wave.

• One way to circumvent this miss-identification would be 
to use crosscorrelation mentioned previously to asses 
the correlation between the two waveforms at many 
different time (or phase) shifts.

• Crosscorrelation is guaranteed to find the best match 
between any two signals.  
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Crosscorrelation (revisited)

The equation for crosscorrelation has been given 
previously and is repeated here:
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where k specifies the shift in samples and rxy[k] is a 
series of correlations as a function of shift.  

The shift is often called lags and will be ≤ ± N. If the 
signals were originally time functions, the lags may be 
converted to time shifts in secs.  

It does not matter which function is shifted with respect 
to the other, the results will be the same. 



Crosscorrelation (cont)

The two waveforms need not be the same length; 
however, even if one waveform is much shorter, there 
will be points missing in the unshifted waveform when 
the shift becomes large enough.

Missing points at the end can be added using padding 
to extend a waveform’s length.  This so-called “zero-
padding” is commonly used.

If correlations are done at all possible shift positions, 
positive and negative, the maximum shift is the 
combined length of the two data sets minus one. 



where x and y are the waveforms to be crosscorrelated 
and maxlags specifies the shift range as ± maxlags.  If 

that argument is omitted, the default maximum shift is: 
length(x) + length(y) – 1. 

In MATLAB, crosscorrelation could be implemented 
using the routine xcorr.  The most common calling 

structure for this routine is:

Crosscorrelation: MATLAB Implementation

[rxy,lags] = xcorr(x,y,maxlags);    % Crosscorrelation

The xcorr function is part of the Signal Processing 

toolbox.



Crosscorrelation: MATLAB Implementation

A similar routine, axcor, can be found in the accessory 

material.  The routine has the same calling structure 
except there is no option for modifying the maximum shift: 
it is always length(x) + length(y) – 1. 

[rxy,lags] = axcor(x,y); % Crosscorrelation 

Although crosscorrelation operations usually scale by 
1/N, this routine uses scaling that gives the output as 
Pearson’s correlation coefficients.

Thus rxy ranges between ± 1. (Dividing the output of 

xcorr by the square root of the variances of each signal will 

give similar results.) 



Example 2.9  File neural_data.mat contains two 
waveforms, x and y, that were recorded from two 

different neurons in the brain with a sampling interval of 
0.2 msec. 

They are believed to be separated by one or more 
neuronal junctions that impart a delay to the signal. 
Plot the original data, determine if they are related and, if 
so, what the time delay is between them. 

Solution: Take the crosscorrelation between the two 
signals using axcor. Find the maximum correlation and 

the time shift at which that maximum occurs. 

The former will tell us if they are related and the latter the 
time delay between the two nerve signals. 



Example 2.9  Crosscorrelation between nerve signals
%
load neural_data.mat;            % Load data
fs = 1/0.0002;                      % Sampling freq. (1/Ts)
t = (1:length(x))/fs;             % Time vector
subplot(2,1,1);
plot(t,y,'k',t,x,':');            % Plot original data
........labels........
[rxy,lags] = axcor(x,y);          % Compute crosscorrelation
subplot (2,1,2);
plot(lags/fs,rxy,'k');            % Plot crosscorrelation 
[max_corr, max_shift] = max(rxy); % Find max correlation 
and shift

Finding the maximum correlation is straightforward 
using MATLAB’s max operator. 

Finding the time at which the maximum value occurs is 
a bit more complicated as shown next.



max_shift = lags(max_shift)/fs;        % Convert max shift to sec
plot(max_shift,max_corr,'*k');           % Plot max correlation
disp([max_corr max_shift])              % Output delay in sec

...... labels, title, scaling.......

Example 2.9 (cont)
The max operator provides the index of the maximum 
value, labeled here as max_shift. 

To find the shift corresponding to this index, we need to 
find the lag value at this shift: lags(max_shift). 

This lag value then needs to be converted to a 
corresponding time shift by dividing it by the sampling 
frequency, fs.  



Example 2.9 Results: The time at which the peak 
occurs is indicated and is found to be 0.013 sec. 
The maximum correlation is 0.45, suggesting the 
two signals are related.
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Example 2.10  Take the EEG signal shown below and 
compare it to a sinusoid at a given frequency. 

We will do this comparison over a range of frequencies.  

Since we want to compare it to a general sinusoid, not 
only a sine wave, we use crosscorrelation to compare it 
to shifted sine waves and take the maximum correlation. 

EEG signal used in 
Example 2.10.



Example 2.10 Compare the EEG signal found in file 
eeg_data.mat with sinusoids ranging in frequencies 

between 1.0 and 25 Hz. The sinusoidal frequencies 
should be in 0.25-Hz increments.

Solution: Load the ECG signal. Use a loop to generate a 
series of sine waves from 0.25 to 25 Hz. (Cosine waves 
would work just as well since the crosscorrelation covers all 
possible phase shifts.)  

Crosscorrelate these sine waves with the EEG signal 
and find the maximum crosscorrelation. 

Plot this maximum correlation as a function of the sine 
wave frequency.



% Example 2.10 Camparison of an EEG signal with sinusoids 
%
load eeg_data;                     % Get EEG data
fs = 50;                                  % Sampling frequency       
t = (1:length(eeg))/fs;           % Time vector
for i = 1:25

f(i) = 0.25*i;                        % Frequency range: 0.25-25 Hz
x = sin(2*pi*f(i)*t);             % Generate sine
rxy = axcor(eeg,x);           % Perform crosscorrelation
rmax(i) = max(rxy);           % Store max value 

end    
plot(f,rmax,'k');                 % Plot max values as function of freq. 

Result:
The result of the multiple crosscorrelations is shown in 
the next slide. 

An interesting structure emerges.
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Result Example 2.10.   

Some frequencies 
show much higher 
correlation between 
the sinusoid and the 
EEG.

A particularly strong 
peak is seen in the 
region of 7 to 9 Hz, 
indicating the 
presence of an 
oscillatory pattern 
known as the alpha 
wave. 

The Fourier transform is a more efficient method for obtaining the 
same information as shown in Chapter 3. 



Autocorrelation

• It is also possible to correlate a signal with other 
segments of itself. 

• This can be done by performing crosscorrelation on 
two identical signals, a process called 
autocorrelation. 

• Autocorrelation is easy to implement in MATLAB (e.g. 
axcor(x,x)), but it is harder to understand what it 

signifies. 

• Autocorrelation describes how long (over what time 
period) a signal remains correlated with itself. 



Autocorrelation (cont)

• As shift increases, the signal is compared with more 
distant neighbors. 

• A signal that remains correlated with itself over long 
time periods must have been influenced by a system 
having “memory” (it must remember past values of the signal 
and use this information to shape the signal’s current values.) 

• The longer the memory, the more the signal will remain 
partially correlated with shifted versions of itself. 

• Just as memory tends to fade over time, the 
autocorrelation function usually goes to zero for large 
time shifts.



Autocorrelation (cont)

To derive the autocorrelation equation, simply substitute 
the same variable for x and y in the crosscorrelation 
equation: 
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where rxx[k] is the autocorrelation function.

The next slide shows four different time functions and 
the corresponding autocorrelation functions. 
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Autocorrelation (cont)

• The autocorrelation of a sine wave is another 
sinusoid, since the correlation varies sinusoidally 
with the lag, or phase shift. (Theoretically the 
autocorrelation should be a pure cosine, but because the 
correlation routine adds zeros to the end of the signal in order 
to compute the autocorrelation at all possible time shifts, the 
cosine function decays as the shift increases.) 

• A rapidly varying signal decorrelates quickly: the 
correlation of neighbors falls off rapidly for even 
small shifts of the signal with respect to itself. (A 
rapidly varying signal has a poor memory of its past 
values and is probably the product of a process with 
a short memory.)



Autocorrelation (cont)

• For slowly varying signals, the correlation falls 
slowly. Nonetheless, as for all signals, there is some 
time shift for which the signal becomes completely 
decorrelated with itself. 

• For a Gaussian noise, the correlation falls to zero 
instantly for all positive and negative lags. This 
indicates that each signal sample is has no 
correlation with neighboring (or any other) samples. 



Autocorrelation (cont)

• Since shifting the waveform with respect to itself 
produces the same results no matter which way the 
waveform is shifted, the autocorrelation function will 
be symmetrical about lag zero. 

• Mathematically, the autocorrelation function is an 
even function:

• The maximum value of rxx occurs at zero lag, where 
the waveform is correlated with itself. 

• If the autocorrelation is normalized by the variance 
(common), the value at zero lag is 1.0. 

r rxx xx( ) ( )  



Autocorrelation: MATLAB Implementation

Autocorrelation in MATLAB is just a special case of 
crosscorrelation. 

When only a single input vector is provided, both xcorr
and axcor assume the autocorrelation function is 
desired. 

[rxx,lags] = axcor(x); % Autocorrelation

[rxx,lags] = xcorr(x,maxlags,’coeff’); % Autocorrelation

The ‘coeff’ option is used with xcorr routine to 

indicate that the output should be normalized to 1.0 at 
zero shift (i.e., lags = 0). The routine axcor does this 

automatically when only a single input is given.  



Autocovariance and Crosscovariance

These two operations are closely related to 
autocorrelation and crosscorrelation except that the 
signal means have been removed:   
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Autocovariance and cross-covariance can be thought 
of as measuring the memory or self-similarity of the 
deviation of a signal(s) about their mean level(s).

Autocovariance

Crosscovariance



Auto and cross-covariance can be implemented using 
axcor or xcorr with the data means subtracted out; 

e.g.: 

[cxy,lags] = axcor(x-mean(x), y-mean(x)); % Cross-covariance

Autocovariance and Crosscovariance
MATLAB Implementation

• Many physiological processes are repetitive, such as 
respiration and heart rate, yet vary somewhat cycle-
to-cycle. 

• Autocorrelation and autocovariance can be used to 
explore this variation. 



Considerable interest revolves around the heart rate 
and its beat-to-beat variations. (Remember that 
autocovariance will subtract the mean value of the heart rate from 
the data and analyze only the variation.) 

Example 2.11 uses autocovariance to examine the 
variation in successive beats. 

In this example, we use autocovariance, not 
autocorrelation, since we are interested in the 
correlation of heart rate variability, not the correlation 
of heart rates per se.

Autocovariance Application



Example 2.11 Determine if there is any correlation in the 
variation between the timing of successive heartbeats 
under normal resting conditions. 
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Example 2.11 Solution: Load the heart rate data taken 
during normal conditions. 

The file Hr_pre.mat contains the variable hr_pre, 

the instantaneous heart rate. However, the heart rate is 
determined each time a heartbeat occurs, so it is not 
evenly time-sampled.  A second variable t_pre

contains the time at which each beat is sampled. 

For this problem, we will determine the autocovariance 
as a function of heart beat and we will not need the 
time variable.

We can determine the autocovariance function using 
axcor by first subtracting the mean heart rate. 



% Example 2.11 Use of autocovariance to determine the 
%   correlation of heart rate variation between heart beats
%
load Hr_pre; % Load normal HR data
% Calculate auto-covariance
[cov_pre,lags_pre] = axcor(hr_pre - mean(hr_pre));
%
plot(lags_pre,cov_pre,'k'); hold on; % Plot results
plot([lags_pre(1) lags_pre(end)], [0 0],'k');   % Plot a zero line
axis([-30 30 -0.2 1.2]); % Limit x-axis

We plot the resulting autocovariance function and 
limit the x axis to ± 30 successive beats to better 
evaluate the decrease in covariance with successive 
beats.
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Example 2.11 Results: The results below show that 
there is correlation between adjacent heartbeats all the 
way out to 10 beats. 



h(t)
x(t) y(t)

y(t) = conv (x(t) h(t))

Convolution and the Impulse Response

Convolution can be thought of as a linear process 
acting on a signal, x(t), to produce a modified signal, 
y(t).

We will show it is also an example of sliding correlation 
were one function is projected as sliding on another. 

The operation of convolution is 
used in linear systems theory to 
calculate the output of an LTI 
system to any input signal.



The Impulse Response

• The function, h(t), is known as the impulse response. 
As the name implies, it is a system’s response to an 
impulse input.

• An impulse input (also termed a delta function and 
commonly denoted δ(t)) is a very short pulse with an 
area of 1.0 (in whatever units you are using).

• In theory it is infinitely short but also of infinite 
amplitude, compensating in such a manner as to keep 
the area 1.0.  (An infinitely short pulse is impossible, so in 
practice the pulse is short enough so further shortening does 
not change the basic shape of the response.)  
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Any signal x(t) can 
be considered to be 
made up of an 
infinite number of 
impulse functions. 
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The Impulse Function and Impulse Response 



Impulse Function: Application

• If you know the system’s response to an impulse, you 
can determine its response to any input simply by 
dividing the input into a sequence of impulses.

• Each time slice will generate its own little impulse 
response.   

• The amplitude and position of this impulse response is 
determined by the amplitude and position of the 
associate input signal segment. 

• If superposition and time invariance hold, then the 
output can be determined by summing (or integrating) 
the impulse responses from all input signal segments.



Each signal segment contributes its own little impulse 
response to the output, scaled and shifted appropriately. 

Since LTI systems are time-invariant, the time shifting 
does not alter the impulse response. 



• Convolution can be used to perform a summation of the 
individual impulse responses.

• Convolving the input signal with the impulse response 
results in the output signal from the process that 
generated the impulse response.

• The convolution sum is similar to the crosscorrelation 
except that one of the functions is reversed:

• Convolution is based on superposition and therefore 
only applies to LTI systems.  

Convolution Sum
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When implementing convolution, we reverse the input 
signal because the low-time side of the signal (the left 
side) is first to enter a system. 

Reversing the Signal

The input 
signal, x[k], 
becomes x[-k]



The Convolution Sum (cont)

Despite this similarity between the convolution sum 
and crosscorrelation, the intent of the two equations is 
completely different:

1. Crosscorrelation compares two functions.

2. Convolution provides the output of an LTI system 
given its impulse response.  

It does not matter which function is shifted, the 
convolution sum can also be written as: 
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The ‘*’ symbol is sometimes used as shorthand for convolution 
which is confusing as it usually represents multiplication.  



In the continuous domain, the summation becomes 
integration leading to the convolution integral:

The Convolution Integral
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The next few slides provide an example of 
convolution using several different sampling 
intervals to show the effect. 
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Assume the  signal on the right is the input to a system 
having the impulse response shown on the left. 

The impulse or signal will be reversed as described 
previously.  (Here we will reverse the impulse response.)

Convolution Illustration
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Convolution Illustration (cont)
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Fifty reversed, 
delayed, and 
scaled 
impulse 
responses 
(solid line).

The 
summation 
(dashed line) 
begins to look 
like the output 
response. 
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Convolution Illustration (cont)

150 reversed, 
delayed, and 
scaled impulse 
responses.

The summation, 
dashed line, 
closely 
approximate the 
actual output 
signal, y[n].



Convolution: MATLAB Implementation

Convolution is easy to implement in MATLAB:

y = conv(x,h);     %Convolution sum

There are some options to control how many data points 
are generated by the convolution, but the default produces 
length(h)+length(x)-1 data points.  

Usually only the first length(x) points are used and the 

additional points are ignored.  (There is an alternative command 
for implementing convolution presented in Chapter 4 that does not 
generate additional points.)  



Example 2.12 Construct an array containing the impulse 
response of a first-order process.  

The impulse response of a first-order process is given by 
the equation: h(t) =  e-t/τ (scaled for unit amplitude).  Assume a 
sampling frequency of 500 Hz and a time constant, τ, of 1 
sec. 

Use convolution to find the response of this system to a 
unit step input. (A unit step input jumps from 0.0 to 1.0 at t = 0.)  

Plot both the impulse response and the output to the step 
input signal.  

Repeat this analysis for an impulse response with a time 
constant of .2 sec (i.e., τ = 0.2 sec.).  



Example 2.12 Solution: The most difficult part of this 
problem is constructing the first-order impulse 
response, the discrete function h[k].  

In order to adequately represent the impulse response, 
a decaying exponential, we make the function at least 5 
time constants long, the equivalent of 5 sec. 

Thus we need an array that is N = TT/Ts = TT (fs) = 
5(500) = 2500 points.  

The step function is just an array of ones 2500 points 
long.  

Convolving this input with the impulse response and 
plotting is straightforward.  



% Example 2.12  Convolution of a first-order system with a
%   step 
%
fs = 500;                       % Sample frequency
N = 2500;                      % Construct 5 seconds worth of data
t = (0:N-1)/fs;                % Time vector 0 to 5 
tau = 1;                         % Time constant
h = exp(-t./tau);            % Construct impulse response
x = ones(1,N);              % Construct step stimulus
y = conv(x,h);              % Get output (convolution)
subplot(1,2,1);
plot(t,h);                       % Plot impulse response

.........label and title.......
subplot(1,2,2);
plot(t,y(1:N));               % Plot the step response

.........label and title.......



0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

y
(t

)

Impulse Response

0 1 2 3 4 5
0

50

100

150

200

250

300

350

400

450

500

Time (sec)

y
(t

)

Step Response

Example 2.12 Results:  The impulse and step 
responses of a first-order system is shown below.

Note that MATLAB’s conv function generates more 

additional samples (in fact, 4999 points) so only the first 
2500 points are used in plotting the response.  


