This is completed downloadable of Solution Manual for Study guide for Single Variable Calculus: Concepts and Contexts
Product Details:
- ISBN-10 : 0495560642
- ISBN-13 : 978-0495560647
- Author:
Contains key concepts, skills to master, a brief discussion of the ideas of the section, and worked-out examples with tips on how to find the solution.
Table of Content:
Preface. To the Student. Diagnostic Tests. A Preview of Calculus. 1. FUNCTIONS AND MODELS. Four Ways to Represent a Function. Mathematical Models: A Catalog of Essential Functions. New Functions from Old Functions. Graphing Calculators and Computers. Exponential Functions. Inverse Functions and Logarithms. Parametric Curves. Laboratory Project: Running Circles around Circles. Review. Principles of Problem Solving. 2. LIMITS AND DERIVATIVES. The Tangent and Velocity Problems. The Limit of a Function. Calculating Limits Using the Limit Laws. Continuity. Limits Involving Infinity. Derivatives and Rates of Change. Writing Project: Early Methods for Finding Tangents. The Derivative as a Function. What Does f?—Say about f—Review. Focus on Problem Solving. 3. DIFFERENTIATION RULES. Derivatives of Polynomials and Exponential Functions. Applied Project: Building a Better Roller Coaster. The Product and Quotient Rules. Derivatives of Trigonometric Functions. The Chain Rule. Laboratory Project: Bezier Curves. Applied Project: Where Should a Pilot Start Descent? Implicit Differentiation. Inverse Trigonometric Functions and their Derivatives. Derivatives of Logarithmic Functions. Discovery Project: Hyperbolic Functions. Rates of Change in the Natural and Social Sciences. Linear Approximations and Differentials. Laboratory Project: Taylor Polynomials. Review. Focus on Problem Solving. 4. APPLICATIONS OF DIFFERENTIATION. Related Rates. Maximum and Minimum Values. Applied Project: The Calculus of Rainbows. Derivatives and the Shapes of Curves. Graphing with Calculus and Calculators. Indeterminate Forms and l’Hospital’s Rule. Writing Project: The Origins of l’Hospital’s Rule. Optimization Problems. Applied Project: The Shape of a Can. Newton’s Method. Antiderivatives. Review. Focus on Problem Solving. 5. INTEGRALS. Areas and Distances. The Definite Integral. Evaluating Definite Integrals. Discovery Project: Area Functions. The Fundamental Theorem of Calculus. Writing Project: Newton, Leibniz, and the Invention of Calculus. The Substitution Rule. Integration by Parts. Additional Techniques of Integration. Integration Using Tables and Computer Algebra Systems. Discovery Project: Patterns in Integrals. Approximate Integration. Improper Integrals. Review. Focus on Problem Solving. 6. APPLICATIONS OF INTEGRATION. More about Areas. Volumes. Discovery Project: Rotating on a Slant. Volumes by Cylindrical Shells. Arc Length. Discovery Project: Arc Length Contest. Average Value of a Function. Applied Project: Where to Sit at the Movies. Applications to Physics and Engineering. Discovery Project: Complementary Coffee Cups. Applications to Economics and Biology. Probability. Review. Focus on Problem Solving. 7. DIFFERENTIAL EQUATIONS. Modeling with Differential Equations. Direction Fields and Euler’s Method. Separable Equations. Applied Project: How Fast Does a Tank Drain? Applied Project: Which Is Faster, Going Up or Coming Down? Exponential Growth and Decay. Applied Project: Calculus and Baseball. The Logistic Equation. Predator-Prey Systems. Review. Focus on Problem Solving. 8. INFINTE SEQUENCES AND SERIES. Sequences. Laboratory Project: Logistic Sequences. Series. The Integral and Comparison Tests; Estimating Sums. Other Convergence Tests. Power Series. Representations of Functions as Power Series. Taylor and Maclaurin Series. Laboratory Project: An Elusive Limit. Writing Project: How Newton Discovered the Binomial Series. Applications of Taylor Polynomials. Applied Project: Radiation from the Stars. Review. Focus on Problem Solving. APPENDIXES. A. Intervals, Inequalities, and Absolute Values. B. Coordinate Geometry. C. Trigonometry. D. Precise Definitions of Limits. E. A Few Proofs. F. Sigma Notation. G. Integration of Rational Functions by Partial Fractions. H. Polar Coordinates. I. Complex Numbers. J. Answers to Odd-Numbered Exercises.
People Also Search:
study guide for single variable calculus: concepts and contexts
study guide for single variable calculus: concepts and contexts pdf
study guide for single variable calculus: concepts and contexts download scribd
study guide for single variable calculus: concepts and contexts solution manual download pdf